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Light scattering from a randomly occupied optical lattice.
II. The multiple scattering problem
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In this paper, we study the problem of multiple scattering of light from a randomly occupied optical lattice,
thereby extending the first-order Born analysis of the previous paper. A full multiple-scattering analysis is
essential to a complete understanding of the nature of light propagation inside a medium. Our calculations
show that the incident wave, when resonant with the atomic medium, is rapidly extinguished due to multiple
scattering. The decay constant depends critically on the incident wavelength, the lattice constant, the average
number density of atoms, and their polarizability. Both the Bragg scattering amplitudes and directions are
modified as a result of multiple scattering. Because of the random site occupation of an otherwise regular
lattice structure, a coherent enhancement of the scattering cross section is also predicted to occur along a
discrete set of directions that are related to the strictly backward direction by reciprocal lattice vectors.
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I. INTRODUCTION

In the previous paper@1#, we showed that by analyzin
the singly scattered light from a partially occupied optic
lattice, we can obtain important information about the latti
such as the lattice constant, the curvature of the trapping
potential, and the number of trapped atoms. We also stu
the angular coherence of the scattered light at both the
damental and first sideband frequencies, and explained
the help of a detailed calculation the phenomenon of spec
line narrowing of the sidebands. In this paper, we relax t
single-scattering Born approximation and consider all ord
of scattering.

Academic curiosity is but a minor motivation for our d
sire to treat the scattering problem exactly. A nonperturba
treatment is largely unavoidable in addressing the deta
manner in which the incident wave itself propagates ins
the nonuniform lattice based medium. Even in a unifo
medium light propagation can still be treated as a multip
scattering phenomenon with free-space propagators, an
ample being the well known optical bandgaps in optical cr
tals @2,3#. For a random medium which has absolutely
regularity, the multiple-scattering viewpoint predicts impo
tant concepts such as enhanced backscattering and ph
localization @4–8# that result from the fact that even in
random medium, multiple scattering does not always corr
the phase of the light. In particular, along any rando
multiple-scattering path and its time-reversed counterp
the propagation phases are identical. This viewpoint le
naturally to regarding light propagation in the random m
dium as a diffusive process in which enhanced scatte
implies a larger diffusion coefficient in the backward dire
tion. This is the phenomenon of weak localization of ligh

A partially occupied optical lattice is a random mediu
with regularity, where the randomness often comes from
uncontrollable distribution of the trapped atoms among
lattice sites. It is desirable to investigate how this regula
alters the properties of light propagation relative to a tota
1063-651X/2003/67~5!/056615~17!/$20.00 67 0566
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random medium and how the randomness of site occupa
influences multiple scattering of light in an otherwise perfe
optical lattice. It has been previously noted that strong loc
ization of photons may occur in a highly predictable mann
in a frequency window in certain disordered superlattice m
crostructures of sufficiently high dielectric contrast@9#. Simi-
lar nonperturbative phenomena are worth investigating
our randomly occupied lattice structure as well.

We show that the wave transmitted into the optical latt
decays in the forward direction as a result of multiple sc
tering. The decay constant depends critically on the incid
wavelength, the lattice constant, the average number den
of atoms, and their polarizability. Both the Bragg scatteri
amplitude and the directions in which coherent scatter
takes place may be significantly modified from the famil
Born-approximation result when scattering is included to
orders. Multiple scattering alters incoherent scattering
well, leading, in particular, to a coherent enhancement of
scattering cross section along a discrete set of directions
are determined by reciprocal lattice vectors. This enhan
ment, akin to that seen only in the strictly backward directi
for a continuous random medium@4–7#, occurs for the light
that is elastically scattered at the incident frequency.

We organize our paper as follows. In Sec. II, we formula
our problem and evaluate the electric field at an observa
point in the form of a multiple-scattering series. By expre
ing the microscopic density function as the sum of its oc
pation averaged value and the deviation about this aver
we decompose in Sec. III, the multiple-scattering series
ther into its coherent, incoherent, and mixed compone
The different multiple-scattering series that result in this w
may be resummed in an approximate way, as we show
Sec. IV. To calculate the intensity averaged over the rand
ness of the occupation of the lattice, it is essential to kn
the statistics of the density fluctuations. We devote Sec. V
a derivation of these statistics. The mean intensity of lig
obtained in the Lamb-Dicke limit by averaging over the de
sity fluctuations, is discussed in Sec. VI. We present
conclusions in Sec. VII.
©2003 The American Physical Society15-1
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II. FORMULATION OF PROBLEM

We treat the incident wave classically, and the scatte
field and the atoms quantum mechanically. The two-le
atoms are assumed to be trapped at the bottom of para
potential wells in a simple cubic lattice and to radiate li
point electric dipoles when excited by the radiation field. T
electric fieldEs(r ,t) scattered by the trapped atoms, wh
excited by an incident plane wave of frequencyv, obeys the
Maxwell wave equation,

“3@“3Es
(1)~r ,t !#1

1

c2

]2Es
(1)~r ,t !

]t2

.
4p

c2
d v2(

i
b ibi~ t !d~r2 l i !, ~1!

where l i5Ri1r i(t) denotes the vector location of the ato
in the well centered at thei th lattice site at positionRi , b i is
0 if the sitei is empty or 1 if it is occupied,bi is the energy
lowering operator for the atom in thei th site, andd is the
atomic dipole moment matrix element. We find it convenie
to work in the frequency domain. Fourier transforming E
~1! with respect to time gives

“3@“3Ẽs
(1)~r ,ṽ !#2S ṽ

c
D 2

Ẽs
(1)~r ,ṽ !

5
4p

c2
v2

d

A2p
(

i
b iE bi~ t !d„r2 l i~ t !…ei ṽtdt. ~2!

With the help of the Green’s functionG @10# for the vector
Helmholtz operator, Eq.~2! may be expressed in the integr
form

Ẽs
(1)~r ,ṽ !5

v24p

c2A2p
E ei ṽtdt

3E G~r ,r0 ,ṽ !•d(
i

bi~ t !b id~r02 l i !dr0 .

~3!

The higher orders of scattering, neglected in Ref.@1#, can be
taken into account by noting that each atom respo
to the total field consisting of the incident fieldEinc(r ,t)
5exp(ik0•r2 iv0t) and the field scattered by all other a
oms,

ḃi~ t !5~2 iv02g!bi~ t !2
d

i\
•@Einc

(1)~ l i ,t !1Es
(1)~ l i ,t !#.

~4!

Note thatbi(t) is driven not just at the frequencyv of the
incident light but also at the motional sidebandsv2nv̄, n

51,2, . . . ,wherev̄ is the natural frequency of oscillation o
the atom in its trapping potential well. Wheng@v̄, the first
few sidebands, those that are significantly excited, all lie w
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within the atomic linewidth, and we may replaceḃi(t) ap-
proximately by2 ivbi(t) in Eq. ~4!, and solve forbi(t) as

bi~ t !5
d• ê0eik0• li2 ivt1d•Es

(1)~ l i ,t !

i\~ iv2 iv02g!
. ~5!

By substituting Eq.~5! into Eq. ~3!, we get an integral
equation forẼs

(1)(r ,ṽ),

Ẽs
(1)~r ,ṽ !5

v24p

c2A2p
E ei ṽtdtE G~r ,r0 ,ṽ !•d

3
d• ê0

i\~ iv2 iv02g! (
i

b id~r02 l i !

3eik0• li2 ivtdr01
v24p

c2A2p

3E ei ṽtdtE G~r ,r0 ,ṽ !•d

3
d

i\~ iv2 iv02g!
•(

i
b id~r02 l i !

3Ẽs
(1)~ l i ,t !dr0 . ~6!

The first term on the right-hand side of Eq.~6! represents the
field scattered by the atoms in response to the incident fi
alone, namely, the first-order Born scattering, while the s
ond term contains all of the higher-order scattering contri
tions. Althoughg actually depends on the sideband bei
observed@1#, we ignore that dependence here for simplici
This dependence can always be introduced formally at a l
point.

Let us introduce in Eq.~6! the notations

f 5
4p

A2p

v2

c2i\~ iv2 iv02g!
,

b5d•e0 ,

s5 f b,

n~r0 ,t !5(
i

b id„r02 l i~ t !….

The function n(r0 ,t) represents the microscopic numb
density of the occupied lattice. Because of the randomnes
b i , this density is also random, and its fluctuations, wh
we shall discuss later, play an essential role in determing
fluctuations of the scattered light intensity. In terms of t
preceding notations, Eq.~6! takes on a simpler appearance
5-2
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Ẽs
(1)~r ,ṽ !5sE ei ṽtdtE G~r ,r0 ,ṽ !•dn~r0 ,t !eik0•r02 ivtdr0

1
f

A2p
E ei ṽtdtE G~r ,r0 ,ṽ !•dn~r0 ,t !dr0

3E e2 iv8tdv8d•Ẽs
(1)~r0 ,v8!. ~7!

We can iterate this integral equation to write out the scatte
field as a multiple-scattering series. To simplify our analys
however, we first reduce the vector equation~7! to an essen-
tially scalar form by making certain reasonable approxim
tions. We replace each occurrence ofd•G(r1 ,r2)•d in any
intermediate scattering step by its corresponding scalar-
value

d•G~r1 ,r2!•d.d2g0~r1 ,r2 ,ṽ !, ~8!

whereg0(r1 ,r2)5(1/4pur12r2u)ei ṽur12r2u/c is the propaga-
tor for the scalar field in vacuum. This approximation is go
05661
d
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as long asṽ/c times the lattice constant is large, so th
near-zone and intermediate-zone fields may be ignored.
field polarization is typically not as essential as the fie
phase, the latter being correctly included in the scalar
proach. Since observation is typically made far away fro
the sample lattice, we can, furthermore, use the far-field
proximation to simplify the full tensor form of the Green
function that describes the final scattering step leading to
observed field, i.e., set

G~r1 ,r2 ,ṽ !.~ I2 r̂1r̂1!
1

4pr 1
ei (ṽr 1 /c)e2 i (ṽ/c)r2• r̂1, ~9!

whereI is the unit dyadic,r̂15r1 /r 1 is the unit vector in the
observation direction andr 1 is the distance between the ob
servation point and the origin of the lattice.

With these approximations the following simple
multiple-scattering series results:
the

ple
Ẽs
(1)~r ,ṽ !5

eikṽr

4pr FesE ei ṽtdtE dr0e2 ikṽr0• r̂n~r0 ,t !eik0•r02 ivt1
f

A2p
esE ei ṽtdtE dr0e2 ikṽr0• r̂n~r0 ,t !

3E dv8e2 iv8tE dt1eiv8t1d2E g0~r0 ,r1 ,v8!dr1n~r1 ,t1!eik0•r12 ivt11S f

A2p
D 2

esE ei ṽtdt

3E e2 ikṽr0• r̂n~r0 ,t !dr0E dv8e2 iv8tE dt1eiv8t1d4E g0~r0 ,r1 ,v8!dr1n~r1 ,t1!

3E dv9e2 iv9t1E eiv9t2dt2E g0~r1 ,r2 ,v9!dr2n~r2 ,t2!eik0•r22 ivt21•••G , ~10!

wherees5s@d•(I2 r̂ r̂ )# andkṽ5ṽ/c. As we saw in Ref.@1#, the oscillatory motion of the atoms in their traps leads to
sidebands in the scattered light that are centered at frequenciesv2nv̄, n51,2, . . . . In atypical experiment,v̄;2p

3104 rad/s, sov̄/c;1024 m21. A real optical lattice is produced by counterpropagating laser beams with volumeDv of
interaction of the order of 13131 cm3. Thus, (v̄/c)Dv1/3;1026!1, and it is safe to replace thev8,v9, . . . inside theg0’s
by v. With this replacement, we may rewrite Eq.~10! as

Ẽs
(1)~r ,ṽ !5

eikṽr

4pr FesE ei ṽtdtE dr0e2 ikṽr0• r̂n~r0 ,t !eik0•r02 ivt1
d2f es

A2p
E ei ṽtdtE dr0e2 ikṽr0• r̂n~r0 ,t !

3E dv8e2 iv8tE dt1eiv8t1E g0~r0 ,r1 ,v!dr1n~r1 ,t1!eik0•r12 ivt11S f d2

A2p
D 2

esE ei ṽtdt

3E e2 ikṽr0• r̂n~r0 ,t !dr0E dv8e2 iv8tE dt1eiv8t1E g0~r0 ,r1 ,v!dr1n~r1 ,t1!E dv9e2 iv9t1

3E eiv9t2dt2E g0~r1 ,r2 ,v!dr2n~r2 ,t2!eik0•r22 ivt21•••G . ~11!

Since the integrations over the frequenciesv8,v9, . . . produced functions in the associated time differences, the multi
time integrals collapse into a single time integral, and we have
5-3
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Ẽs
(1)~r ,ṽ !5

eikṽr

4pr
esF E ei ṽtdtE dr0e2 ikṽr0• r̂n~r0 ,t !eik0•r02 ivt1d2fA2pE ei ṽtdtE dr0e2 i (ṽ/c)r0• r̂n~r0 ,t !

3E g0~r0 ,r1 ,v!dr1n~r1 ,t !eik0•r12 ivt1~ f d2A2p!2E ei ṽtdtE e2 ikṽr0• r̂n~r0 ,t !dr0

3E g0~r0 ,r1 ,v!dr1n~r1 ,t !E g0~r1 ,r2 ,v!dr2n~r2 ,t !eik0•r22 ivt1••• G
[

eikṽr

4pr
esE ei (ṽ2v)tdtE dr0e2 ikṽr0• r̂n~r0 ,t !Ẽs1

(1)~r0 ,v!, ~12!

where the symbolẼs1
(1)(r0 ,v) represents the field generated on iteratively solving the following integral equation:

Ẽs1
(1)~r ,v!5Einc~r !1d2fA2pE g0~r ,r1 ,v!n~r1 ,t !Ẽs1

(1)~r1 ,v!dr1 , ~13!

andEinc(r ) is defined aseik0•r.
Equation~12! represents the complete response of the optical lattice to the incident radiation. It carries information n

about the medium, i.e., atomic motion and distribution, but also about the radiation field itself, in particular, about h
incident light is multiply scattered as it propagates through the lattice. To determine the statistical properties of the r
field, we will first decompose the microscopic density function and thus the radiation fields in Eq.~12! into a convenient form.
ul
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III. DECOMPOSITION OF THE MICROSCOPIC DENSITY
AND RADIATION FIELDS

In the medium we consider, the atoms reside on reg
lattice sites, although since whether a site is occupied or
can only be stated probabilistically, we have a random m
dium. The randomness is described by each variableb i ,
which takes on the value 1 when thei th site is occupied and
0 when that site is vacant. By denoting the average occu
tion fraction of each site byb0, we can separaten(r ,t) into
an average occupation part and a fluctuation part,

n~r ,t !5(
i

b id~r2 l i~ t !!

5b0(
i

d„r2 l i~ t !…1(
i

„b i2b0…d„r2 l i~ t !…

[n0~r ,t !1dn~r ,t !, ~14!

with ^dn(r ,t)&50.
In terms of the linear integral operatorĝ0, defined by its

action on any functionf (r ) as the following integral over the
medium volume:

ĝ0f 5E g0~r ,r1 ,v! f ~r1!dr1 ,

and with the help of Eq.~14!, we may symbolically write Eq.
~13! as

Ẽs1
(1)5Einc1d2fA2pĝ0n0Ẽs1

(1)1d2fA2pĝ0dnẼs1
(1) .

~15!
05661
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By transposing the second term on the right-hand side of
~15! to its left-hand side, we may express it in terms of t
inverse linear operator

K̂5~ 1̂2d2fA2pn0ĝ0!21

as the more compact operator relation

Ẽs1
(1)5K̂Einc1d2fA2pK̂ĝ0dnẼs1

(1) . ~16!

The symbol 1ˆ denotes the identity operator. We denote t
first term on the right-hand side of Eq.~16! as I 0 and the
propagator in the second term asI 1. The latter is obtained
from the free-space propagator by dressing it, so as to
commodate the effects of the avearge-density medium.
may rewrite Eq.~16! inside the lattice in its normal expande
form as

Ẽs1
(1)~r ,v!5I 0~r ,t;k0!1E I 1~r ,r1 ,t !dn~r1!

3Ẽs1
(1)~r1 ,v!dr1 , ~17!

where

I 0~r0 ,t;k0!5eik0•r01d2fA2pE g0~r0 ,r1 ,v!n0~r1 ,t !

3eik0•r1dr11~d2fA2p!2E g0~r0 ,r1 ,v!

3n0~r1 ,t !dr1E g0~r1 ,r2 ,v!

3dr2n0~r2 ,t !eik0•r21••• ~18!
5-4
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represents the incident wave multiply scattered by a u
formly occupied lattice with site occupation fraction bein
b0 at each site@11#. Such a wave may be regarded as t
refracted wave. The dressed propagator

I 1~r0 ,r1 ,t !5d2fA2pg0~r0 ,r1 ,v!1~d2fA2p!2

3E g0~r0 ,r2 ,v!n0~r2 ,t !

3dr2g0~r2 ,r1 ,v!1••• ~19!

represents the refraction by the uniform lattice of a spher
wave scattered by the density fluctuation atr1 before the
refracted field gets rescattered by fluctuations atr0.

By substituting Eq.~17! back into Eq.~12! and collecting
terms according to the number of timesdn occurs in each
term, we obtain the following expression ofẼs

(1) :

Ẽs
(1)~r ,ṽ !}esF E ei (ṽ2v)tE e2 ikṽ r̂•r0n0~r0 ,t !

3I 0~r0 ,t;k0!dr01E ei (ṽ2v)tdt

3E dr0I 2~r0 ,t;ṽ !dn~r0 ,t !I 0~r0 ,t;k0!

1E ei (ṽ2v)tdtE dr0I 2~r0 ,t;ṽ !dn~r0 ,t !

3E I 1~r0 ,r1 ,t !dn~r1 ,t !I 0~r1 ,t;k0!dr11••• G ,
~20!

where

I 2~r0 ,t;ṽ !5e2 ikṽ r̂•r01d2fA2pE e2 ikṽ r̂•r1n0~r1 ,t !

3g0~r1 ,r0 ,v!dr11••• ~21!

describes the wave that proceeds to the observation p
after the very last scattering from the medium density fl
tuations atr0. This wave is a superposition of more eleme
tary waves scattered by the uniform lattice 1,2, . . . times
before propagating to the observation point.

Equation ~20! is a conveniently rearranged form of th
multiple-scattering series~12!. The three propagators w
have introduced, namely,I 0 , I 1, and I 2, represent the re
fracted incoming wave, the refracted spherical wave, and
refracted outgoing wave~in the far field!, respectively. The
refraction process can be regarded as the renormalizatio
the incident field by the uniform lattice. With this interpret
tion of the propagators, we can give physical meaning to
various terms of Eq.~20!. The first term in Eq.~20! is the
amplitude spectrum of the coherent, multiply scattered Br
field. The second and later terms describe the spectrum o
first- and higher-order scattering of such multiply scatte
Bragg field from the same lattice but with sites that hav
fluctuating occupation fraction,db i5b i2b0 at sitei. Before
05661
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undergoing its first scattering from a fluctuation, the fie
propagates in the medium as the refracted incoming wa
between two such scatterings, the field propagates as a
fracted spherical wave; and after the last such scattering
field propagates as a refracted outgoing wave.

The scattered field fluctuates because of site occupa
fluctuations. A study of the statistics of those fluctuatio
which we undertake next, will then directly yield the stati
tics of the scattered field.

IV. DENSITY STATISTICS ON A LATTICE

By the very definition of the density fluctuationdn, its
first moment vanishes,

^dn~r ,t !&50. ~22!

Its second moment can be calculated by noting that

^n~r ,t !n~r1 ,t !&5 (
i , j 51

N

^b ib j&d~r2 l i !d~r12 l j !

5(
i 51

N

^b i&d~r2 l i !d~r2r1!

1(
iÞ j

N

^b i&^b j&d~r2 l i !d~r12 l j !

5b0(
i 51

N

d~r2 l i !d~r2r1!

1b0
2(

iÞ j

N

d~r2 l i !d~r12 l j !, ~23!

since b i
25b i and two different sites are uncorrelate

^b ib j&5^b i&^b j& if iÞ j . On the other hand,

^n~r ,t !n~r1 ,t !&

5^@n0~r ,t !1dn~r ,t !#@n0~r1 ,t !1dn~r1 ,t !#&

5n0~r ,t !n0~r1 ,t !1^dn~r ,t !dn~r1 ,t !&

5b0
2 (

i , j 51

N

d~r2 l i !d~r12 l j !1^dn~r ,t !dn~r1 ,t !&

5b0
2(

i 51

N

d~r2 l i !d~r12r !1b0
2(

iÞ j

N

d~r2 l i !d~r12 l j !

1^dn~r ,t !dn~r1 ,t !&. ~24!

By equating Eqs.~23! and ~24!, we have

^dn~r !dn~r1!&5b0~12b0!d~r2r1!(
i 51

N

d~r2 l i !.

~25!

It is worth noting thatb0(12b0) is nothing but the variance
of the occupation of any one site,^(b2b0)2&. Its presence
5-5
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along withd(r2r1) reflects the fact that the occupation flu
tuation at a site is only correlated with itself.

The following expressions may be similarly derived f
the higher-order correlation functions:

^dn~r ,t !dn~r1 ,t !dn~r2 ,t !&

5^~b2b0!3&(
i 51

N

d~r2 l i !d~r12 l i !d~r22 l i !, ~26!

^dn~r1 ,t !dn~r2 ,t !dn~r3 ,t !dn~r4 ,t !&

5^~b2b0!4&(
i 51

N

d~r12 l i !d~r22 l i !d~r32 l i !d~r42 l i !

1^~b2b0!2&2(
iÞ j

N

d~r12 l i !d~r22 l i !d~r32 l j !

3d~r42 l j ! 1^~b2b0!2&2(
iÞ j

N

d~r12 l i !

3d~r32 l i !d~r22 l j !d~r42 l j ! 1^~b2b0!2&2

3(
iÞ j

N

d~r12 l i !d~r42 l i !d~r22 l j !d~r32 l j !, ~27!

^dn~r1!•••dn~rn!&5(
$P%

Pn,k,%, . . . ,M nMkM%•••

3 (
iÞ j ÞkÞ•••51

N

d~r12 l i !•••

3d~r n2 l i !d~r n112 l j !•••

3d~r n1k2 l j !d~r n1k112 lk!•••

3d~r n1k1%2 lk!•••. ~28!

The preceding expressions involve the various moment
the site occupation fluctuation,M n[^(b2b0)n&. Since b
can only take the values 0 and 1, the latter with probabi
N/N05b0 , ^bp&5b0 for all p>1. This allows us to write
down an explicit expression forM n ,

M n5 (
p50

n S n

pD ^bp&~2b0!n2p

5b0~12b0!n1~21!nb0
n~12b0!. ~29!

Note the transformationM n→(21)nM n under the symmetry
operationb0→(12b0). This represents the fact that the d
gree of randomness correlates not so much with the ac
occupation rates as with the departure from regularity of
lattice based medium. Such departures for two media
05661
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equivalent whenb0 for one medium has the same value
(12b0) for the other.

Thed-function factors in each term on the right-hand si
of Eq. ~28! represent the fact that each atomic position
only correlated with itself. The notationPn,k,%, . . . , indicates
a permutation of the set ofn positions,r1 , . . . ,r n , where
a particle can reside, a different set ofk positions where
another particle can reside, and so on until alln positions
are exhausted. Such permutations must then be summed
all possible nonnegative integral values ofn, k, % that add
up to n, and over all possible particle locations or lattic
sites.

In calculating the mean intensity of scattered light, w
will need to specialize Eq.~28! to include only those con-
figurations for which the field phase in each multipl
scattering term of Eq.~20! is exactly canceled by the phas
of the complex conjugate of that term. In a random mediu
whether on a lattice or not, this can only happen for a p
ticular multiple-scattering path and its exact time-revers
version. This observation implies that in the mean intens
~i! only even-order moments will contribute and~ii ! if scat-
tering paths with loops are not permitted, then only ter
with indicesn,k,%, . . . each equal to 2 on the right-han
side of expression~28! will contribute. These nonvanishing
contributions correspond to the ladder and cross te
@6,7,12#, which result from the interference of an optical pa
with itself and with its time-reversed version, respective
An example of the fourth order ladder and cross diagram
shown in Fig. 1. We can drop all other configurations sin
they only make an insignificant contribution to the me
intensity, either because of phase randomness or bec
they represent field contributions in which a particular ato
is visited more than once~loop diagrams! in the scattering
process. The justification for neglecting the loop diagram
that in a typical optical lattice with an average occupati
rate that is very low,b0.0.1, a photon has a negligibl
chance to be scattered back to the atom from which it w
scattered before. In the opposite limit ofb0→1 too, the loop
diagrams do not contribute much to the scattered light int
sity, because the density fluctuations once again are sma
we noted earlier. Of course, when optical gain is prese
loop diagrams become important and, in fact, power rand
lasering@13#.

In view of the preceding arguments, we may replace
full sum ~28! by only those terms in it that correspond to th
ladder and cross terms in the mean intensity

FIG. 1. The fourth-order ‘‘ladder’’~left! and ‘‘cross’’~right! dia-
grams. Arrows indicate the time ordering of single-scattering eve
and straight lines connect identical scatterers.
5-6
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^dn~r1!•••dn~rn!&5@b0~12b0!#n/2

3 (
iÞ j ÞkÞ•••51

N

(
$P%

P2,2,2, . . .

3d~r12r i !d~r22r i !

3d~r32r j !d~r42r j !d~r52r k!

3d~r62r k!•••. ~30!

V. THE MEAN INTENSITY OF THE SCATTERED LIGHT

With Ẽs
(1)(r ,ṽ) found in Sec. III, it is straightforward to

calculate its Hermitian adjointẼs
(2)(r ,ṽ), and then to con-

struct the average of the normally ordered product of the
to compute the mean intensity of the scattered light. We
sume the Lamb-Dicke limit of sharply localized atoms
simplify our calculation. This is the typical experiment
situation @15#, for which motion of the atoms in their trap
ping wells may be neglected. The time dependence
n(r ,t), I 0 , I 1, and I 2 arising from the motion of the atom
can thus be ignored. The integration over time in Eq.~20!

generates the functiond(ṽ2v) corresponding to an elasti
multiple-scattering process, consistent with the Lamb-Dic
limit we adopt here. Our problem, in fact, reduces forma
to a classical problem.

When use is made of Eq.~30!, the following occupation
average results:

^Ẽs
(2)~r1 ,v!•Ẽs

(1)~r1 ,v!&

}es•es* Fb0
2E dr0ei (v/c) r̂•r0n̄0~r0!I 0* ~r0 ,k0!

3E dr08e
2 i (v/c) r̂•r08n̄0~r08!I 0~r08 ,k0!1b0~12b0!

3E dr0I 2* ~r0 ,v!I 0* ~r0 ,k0!I 2~r0 ,v!I 0~r0 ,k0!

3n̄0~r0!1b0
2~12b0!2E dr0I 2* ~r0 ,v!I 2~r0 ,v!
05661
o
s-

of

e

3n̄0~r0!E I 1* ~r0 ,r1!I 1~r0 ,r1!n̄0~r1!I 0* ~r1 ,k0!

3I 0~r1 ,k0!dr11b0
2~12b0!2E dr0I 2* ~r0 ,v!

3n̄0~r0!I 0~r0 ,k0!E I 1* ~r0 ,r1!I 1~r0 ,r1!

3n̄0~r1!I 0* ~r1 ,k0!I 2~r1 ,v!dr11••• G , ~31!

where n̄0(r )5( i 51
N d(r2Ri), and the ellipses stand fo

terms that result from the sixth- and higher-order fluctu
tions. One can readily identify the first term as represent
the Bragg reflection of the refracted wave from a regu
lattice with a uniform occupationb0 for each site, the secon
term as the single-scattering term, the third term as the
ladder term, the fourth term as the first cross term, and so

Equation ~31! is rather involved, but insight may b
gained by considering some of its building blocks first. T
first of them is the refracted incoming field

I 0~r0 ,k0!.eik0•r01w1a3(
i

eik0ur02Ri u

4pur02Ri u
eik0•Ri

1w1
2a6(

iÞ j

eik0ur02Ri u1 ik0uRi2Rj u

4pur02Ri u4puRi2Rj u
eik0•Rj1•••,

~32!

where we have defined thatw15b0(d2fA2p)/a3 and a is
the optical lattice constant. It is understood that whenr0 is a
lattice site, then one must exclude that site from thei sums.
The field contributionI 2 is formally related toI 0,

I 2~r0 ,v!5I 0~r0 ,k2s!,

where we have setk2s52k0r̂52ks . The intermediate-
scattering termI 1 takes the form
llowing
I 1~r0 ,r1!5
w1a3

b0

eik0ur02r1u

4pur02r1u
1

~w1a3!2

b0
(

k

eik0ur02Rku

4pur02Rku
eik0uRk2r1u

4puRk2r1u
1•••. ~33!

In terms of these building blocks, the mean intensity of light scattered from the lattice is seen to have the fo
structure:

I}Ub0(
i

e2 ik0r̂•Ri I 0~Ri ,k0!U2

1b0~12b0!(
i

I 0~Ri ,k0!I 0* ~Ri ,k0!I 0~Ri ,k2s!I 0* ~Ri ,k2s!1b0
2~12b0!2

3(
iÞ j

I 0* ~Ri ,k2s!I 0~Ri ,k2s!I 1* ~Ri ,Rj !I 1~Ri ,Rj !I 0* ~Rj ,k0!I 0~Rj ,k0!1b0
3~12b0!3

3 (
iÞ j , j Þk

I 0* ~Ri ,k2s!I 0~Ri ,k2s!I 1* ~Ri ,Rj !I 1~Ri ,Rj !I 1* ~Rj ,Rk!I 1~Rj ,Rk!I 0* ~Rk ,k0!I 0~Rk ,k0!1•••1b0
2~12b0!2
5-7
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3(
iÞ j

I 0* ~Ri ,k2s!I 0~Ri ,k0!I 1* ~Ri ,Rj !I 1~Ri ,Rj !I 0* ~Rj ,k0!I 0~Rj ,k2s!1b0
3~12b0!3

3 (
iÞ j , j Þk

I 0* ~Ri ,k2s!I 0~Ri ,k0!I 1* ~Ri ,Rj !I 1~Ri ,Rj !I 1* ~Rj ,Rk!I 1~Rj ,Rk!I 0* ~Rk ,k0!I 0~Rk ,k2s!1•••. ~34!
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The first term yields the coherent, multiply scattered Bra
intensity. The second term describes the light intensity s
tered singly by the density fluctuations. The sums that foll
are of two kinds. All of the sums before the first set of e
lipses represent the ladder seriesL, while the remaining sums
represent the cross seriesC.

The coherent multiple-scattering seriesI 0 and I 1 may be
approximately resummed, as we show in Appendix A, as

I 1~Ri ,Rj !5s~k0!
1

Ri j
ei [Re a(k0)1 i Im a(k0)]Ri j , ~35!

I 0~Ri ,k0!5L~k0!eik'•Riei [Re b(k0)1 i Im b(k0)]zi. ~36!

We can see from Eq.~35! that multiple-scattering from the
uniform medium causes an exponential loss of amplitu
when a spherical wave propagates from one lattice site
another. The characteristic distance over which the amplit
decays is given by 1/Ima(k0). The refracted incoming wave
I 0 too decays with a similar characteristic consta
1/Imb(k0) in the z direction.

If r̂ is in the backward direction, thenk2s is in the for-
ward direction, and vice versa. The two situations are qu
tatively different, however. For the forward scattering,r̂ is
alongk0, andI 0 takes on the form

I 0~Ri ,k2s!

5L~k2s!e
ik2s'•Ri1 ik2szzfei [Re b(k2s)1 i Im b(k2s)](zf2zi ),

~37!

where zf is the z component of the last layer seen by t
incident wave. By contrast, for the backward scattering,
~36! can be employed directly by replacingk0 with k2s .

With the help of the preceding two expressions~35! and
~36!, we are ready to calculate the ladder and the cross se
These calculations are rather long and tedious, although
physics ofL and C is well understood. We will therefore
leave the detailed derivation to Appendix C, and only wr
down the final expressions forL andC here,

L5uL~k0!u2uL~k2s!u2C0j
bm~k0!bm~k2s!

p2

3NxNyS 2p

a D E
V1

dk1(
Gz

1

~k11Gz!
21bm

2 ~k0!

3(
Kz

1

~k11Kz!
21bm

2 ~k2s!

d~k1!

12jd~k1!
, ~38!
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C5C0uL~k0!u2uL~k2s!u2jS D Im

p D 2

3NxNyS 2p

a D E
V1

dk1F(
Gz

1

~k11Gz!
21~D Im!2G 2

3
d1~k1!

12jd1~k1!
. ~39!

The various quantities appearing in expressions~35!–~39!
are defined in Appendixes A and C.

In view of expressions~38! and ~39!, the total scattered
light intensity averaged over the density fluctuations redu
to the closed form

I 5Ub0(
i

e2 ik0r̂•Ri I 0~Ri ,k0!U2

1C0(
i

I 0~Ri ,k0!I 0* ~Ri ,k0!I 0~Ri ,k2s!I 0* ~Ri ,k2s!

1C0uL~k0!u2uL~k2s!u2jNxNy

bm~k0!bm~k2s!

p2 S 2p

a D
3E

V1

dk1(
Gz

1

~k11Gz!
21bm

2 ~k0!

d~k1!

12jd~k1!

3(
Kz

1

~k11Kz!
21bm

2 ~k2s!

1C0uL~k0!u2uL~k2s!u2jNxNyS D Im

p D 2S 2p

a D
3E

V1

dk1F(
Gz

1

~k11Gz!
21~D Im!2G 2

3
d1~k1!

12jd1~k1!
. ~40!

The first term represents Bragg scattering of the refrac
light. It may be computed straightforwardly as
5-8
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Ub0(
i

e2 ik0r̂•Ri I 0~Ri ,k0!U2

5b0
2uL~k0!u2 H 12cos@~k2sx1k'x!~Nx11!a#

12cos@~k2sx1k'x!a#

12cos@~k2sy1k'y!~Ny11!a#

12cos@~k2sy1k'y!a# J
3$11e2Im b(k0)(Nz11)a

„122 cos$@k2sz1Reb~k0!#

3~Nz11!a%e2Im b(k0)(Nz11)a
…%

1

11e2Im b(k0)a$122cos@„k2sz1Reb~k0!…a#e2Im b(k0)a%
.

~41!
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The second term represents the first-order scattering by
fluctuations in the occupation of the lattice sites

I s5C0(
i

I 0~Ri ,k0!I 0* ~Ri ,k0!I 0~Ri ,k2s!I 0* ~Ri ,k2s!

5C0uL~k0!u2uL~k2s!u2NxNy

3
12e2[bm(k0)1bm(k2s)]a(Nz11)

12e2[bm(k0)1bm(k2s)]a
. ~42!

The remaining two terms represent the ladder and c
terms that arise from the second and the higher-order s
tering by occupation fluctuations.

The proportionality ofI s to NxNy , the number of atoms
in each medium layer normal to thez axis, is due to the fac
that each of these atoms contributes equally on averag
scattering. The dependence of various scattered fields oNz
is considerably more involved because of the decay of
coherent fields along thez axis.

The preceding expression for the mean intensity of
scattered light is valid, as we saw earlier, only whenr̂ is in
the backward direction. Forr̂ in the forward direction, all
terms, except for the multiply scattered Bragg contributi
need to be recalculated. We show in Appendix D that
new ladder and cross termsL f andCf are

L f5C0uL~k0!u2uL~k2s!u2j
bm~k0!bm~k2s!

p2

3NxNyS 2p

a D E
V1

dk1(
Gz

1

~k11Gz!
21bm

2 ~k0!

3
d~k1!

12jd~k1! (
Kz

1

~k11Kz!
21bm

2 ~k2s!
eik1zf ~43!

and

Cf5C0uL~k0!u2uL~k2s!u2e2bm
,(k1)zfjS D

p D 2S 2p

a D
3NxNyE

V1

dk1F(
Gz

1

~k11Gz!
21D2G 2

d2~k1!

12jd2~k1!
.

~44!
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Except for a phase functioneik1zf inside the integrand,L f is
the same asL. The cross termsC and Cf are similarly re-

lated, but the presence ofe2bm
,(k1)zf in Cf makes it very

small relative toC. This is because the fields multiply sca
tered along a particular path and its time-reversed coun
part do not have a definite phase relation, when obser
outside the medium in the forward direction, and thus do
interfere constructively. The single-scattering contribution
the forward scattering is also easily computed,

I f s5C0uL~k0!u2uL~k2s!u2e2bm(k2s)zfNxNy

3
12e[ 2bm(k0)1bm(k2s)](Nz11)a

12e[ 2bm(k0)1bm(k2s)]a
. ~45!

Formally, the multiply scattered Bragg term remains t
same.

VI. ILLUSTRATIVE EXAMPLES AND DISCUSSION

We choose incidence, that is, 1° off the normal directio
k05k0(sin 1°,0,cos 1°), and takeks to be in thexz plane. Its
orientation is described by an angleus relative to thez axis.
For the elastic scattering, we consider hereks
5k0(sinus,0,cosus). A look at Eq. ~41! shows that for our
chosenk0, there are only two main Bragg peaks aroundus
5179° andus51°. We limit us to the ranges@177°,185°#
for the backscattering case and@23°,5°# for the forward
scattering case to cover these peaks adequately.

Also we takev2v0510g, whereg is half the natural
decay rate of the isolated atom,

g5
2d2k0

3

3\
.

We pick the ratio ofl0, the incident wavelength, toa, the
lattice constant, to be 1.5, andb050.1. In this case,Nb
53321526. The following two identities@16# are particu-
larly helpful to our calculations:

(
k51

`
1

k22x2
5S 1

px
2cotpxD p

2x
,

1

x
12x(

k51

`
1

k21x2
5p

epx1e2px

epx2e2px
.
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We can now numerically compute the total intensityI and
plot it as a function of scattering direction.

One can easily identify the biggest peak on the left in F
2 as coming from Bragg scattering. It is centered atus
5179° at which the Bragg scattering condition is met. T
decay of the refracted wave in theẑ direction as given by Eq
~36! ensures that only a surface layer of thickness of
order of 1/Imb(k0) will contribute to any scattering. The
dotted curve represents the contribution of this surface-la
Bragg scattering alone.

The difference between the two curves in Fig. 2 rep
sents the contribution of multiple-scattering from the dens
fluctuations, and is plotted in Fig. 3. A small peak in t

FIG. 2. Mean intensity of backwardly scattered light against
observation angleus , with the contribution of the multiply scat
tered Bragg field alone shown by the dotted curve.

FIG. 3. Mean intensity of light scattered from an optical latti
against the observation angleus near the backward direction. Th
Bragg contribution is now excluded. The angleus5181° corre-
sponds to the strictly backward direction.
05661
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strictly backward direction is evident, and arises from t
cross termsC in Eq. ~39!. This peak is also present in th
backscattering cross section for a continuous medium of
dom scatterers@12#.

Apart from the small peak, the effect of these multipl
scattering terms is to raise the mean intensity of the Br
scattered light only slightly. The reason for the smallness
these terms is that they contribute only in the second
higher orders of scattering, while the Bragg scattering ter
contribute coherently to all orders including the leading fir
order term.

In the forward direction, Bragg scattering is alwa
present, as seen in Fig. 4 where the total intensity of ligh
plotted. The multiply scattered Bragg terms complete
swamp the contribution of incoherent multiple-scatteri
arising from the density fluctuations in the forward directio
Indeed, in Fig. 4, the multiply scattered Bragg field cont
bution, if shown, would be impossible to discern from t
total mean intensity. This can be appreciated from the re
tive smallness of the vertical scale in Fig. 5, where we ha
plotted the contributionI s1L f s1Cf s of incoherent multiple-
scattering.

In Fig. 5, we also find a peak centered atks
5k0(2sin 1°,0,cos 1°). The physical origin of this peak, u
expected for scattering from a continuous medium, can
traced back to multiple-scattering of radiation by a regu
lattice structure. To see this clearly, let us look, for examp
at a third-order scattering process displayed in Fig. 6,
though our conclusion will be valid for any order of scatte
ing. Suppose one scattering sequence,s, represented by solid
arrows, starts at atom 1 and ends at atom 3, and the scat
field is then detected far away atr . Its time-reversed version
s8 follows the opposite sequence 3→2→1. Let the incident
and scattered wave vectors bek0 andks , respectively. Then,
the phase accumulated for the paths is

Fs5k0•R11k0~R121R23!1ks•~r2R3!, ~46!

e FIG. 4. Mean intensity of forwardly scattered light against t
observation angleus .
5-10
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LIGHT SCATTERING FROM A . . . . II. . . . PHYSICAL REVIEW E67, 056615 ~2003!
while the phase accumulated for the paths8 is

Fs85k0•R31k0~R231R21!1ks•~r2R1!

5Fs1~k01ks!•~R32R1!. ~47!

Obviously, when

k01ks5K , ~48!

where K is an arbitrary reciprocal lattice vector, the tw
phasesFs andFs8 differ only by an integral multiple of 2p.
These contributions to the scattered field therefore inter
constructively, leading to an enhancement of the cross
tion.

Since the coherent refracted wave undergoes a rapid
of amplitude in thez direction, the enhancement from th
constructive interference of direct and reversed paths co
mainly from lattice sites that are close to the entrance fac

FIG. 5. Mean intensity of light multiply scattered forward fro
an optical lattice against the observation angleus .

FIG. 6. The third-order scattering and its time-reversed vers
represented by the solid and dashed arrows, respectively.
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the medium. It is therefore necessary to consider only
transverse projection of Eq.~48! on to that surface,

k'1ks'5K' , ~49!

to determine the various directions of the multiple-scatter
enhancement peaks. This result is analogous to the B
scattering condition but has a purely multiple-scattering o
gin. For the special case, we are considering here, there
only two enhanced directionsks5(2sin 1°,0,2cos 1°) and
ks5(2sin 1°,0,cos 1°) corresponding to the peaks in Figs
and 5, respectively.

In a continuous medium, since all nontrivial values ofK
may be regarded as being infinitely large, there is only o
enhanced direction, corresponding to the trivial value ofK ,
namely, 0. This represents the familiar backscattering
hancement peak atks52k0.

VII. CONCLUSION

In this paper, we have discussed the multiple-scattering
light from a randomly occupied optical lattice, and show
that the discreteness and regularity of the lattice modify
rather subtle ways both the decay constant of the refra
light and the intensity of the scattered light, when the in
dent light has a wavelength that is comparable or sma
than the lattice constant. Unlike a continuous medium, wh
the contribution from a uniform background is most app
ciable only in the forward direction, coherent Bragg scatt
ing tends to dominate in the scattered light in an opti
lattice along the whole collection of Bragg directions. W
also showed that due to the discrete but regular structur
an optical lattice, the nature of multiple-scattering is qu
different. In particular, the multiple-scattering peaks occ
not just in the backward direction but in all directions th
differ from it by a reciprocal lattice vector. In a continuou
medium, by contrast, the constructive interference of dir
and time-reversed paths that is responsible for enhancem
of the scattered light produces a peak only in the stric
backward direction.

APPENDIX A: CALCULATIONS OF I 1„Ri ,Rj…

AND I 0„Ri ,k0…

By using the Fourier transform relation

eik0r

4pr
5

1

8p3E eik•r

k22k0
2

dk, ~A1!

in which k0 is understood to possess a vanishingly sm
positive imaginary part, we can rewrite the second term
the series~33! as

n
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I 1
(2)~Ri ,Rj ![

~w1a3!2

b0
(

kÞ i ,kÞ j

eik0uRi2Rku

4puRi2Rku
eik0uRk2Rj u

4puRk2Rj u

5
~w1a3!2

b0~8p3!2 (
lÞ i

E dk1

eik1•(Ri2Rl )

k1
22k0

2

3 (
mÞ j

E dk2

eik2•(Rm2Rj )

k2
22k0

2
dml . ~A2!

Use of the identity, dml5(a3/8p3)*V3
dkeik•(Rl2Rm), in

which the integration volume is the fundamental Brillou
zoneV3, followed by a change of the order of integratio
and summation and repeated use of the Poisson summ
formula

(
l

ei (ka2kb)•Rl5S 2p

a D 3

(
K

d~ka2kb2K !, ~A3!

where K ’s are the reciprocal lattice vectors, simplify th
right-hand side of Eq.~A2! into a form involving integrals
rs
i-
-
f i

g
nd

05661
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over d functions. By evaluating these integrals, we may d
rive the following expression forI 1

(2) :

I 1
(2)~Ri ,Rj !5

w1
2a3

b08p3EV3

dk1eik1•Ri j

3F(
K

1

~k11K !22k0
2

2DG 2

, ~A4!

whereRi j 5Ri2Rj andD5(a3/8p3)*dk21/(k2
22k0

2).
In the integrand of Eq.~A4!, the vectorsk11K represent,

for differentK , all possible wave vectors that can result fro
the scattering of radiation with wave vectork1 incident on a
regular lattice of atoms. But not allK contribute equally. The
resonant nature of the propagator 1/@(k11K )22k0

2# tends to
favor those wave vectorsk11K that have magnitudes clos
to k0. Wave vectors that meet the above two conditions r
resent Bragg scattering@17#, which is therefore the dominan
scattering channel for a lattice based medium.

Every higher-order term in the series~33! may be simi-
larly simplified, thenth-order term taking the form
~w1a3!n

b0
(

l 1Þ i ,l 2
••• (

l n21Þ l n22 , j

eik0Ril 1

4pRil 1

eik0Rl 1l 2

4pRl 1l 2

•••

eik0Rl n22l n21

4pRl n22l n21

eik0Rl n21 j

4pRl n21 j

5w1
n a3

b08p3EV3

dk1eik1•Ri jF(
K

1

~k11K !22k0
2

2DG n

, ~A5!
and

re-

h

for n>2. By adopting a somewhat different strategy, the fi
term in expression~33! can also be transformed into a sim
lar form. If in Eq. ~A1! a decomposition of the entire recip
rocal space into the first Brillouin zone and copies thereo
made, we may write

w1a3

b0

eik0uRi2Rj u

4puRi2Rj u
5

w1a3

b08p3EV3

dk1eik1•Ri j

3F(
K

1

~k11K !22k0
2

2DG .

~A6!

Use of Eqs.~A5! and~A6! then turns the multiple-scatterin
series~33! into an integral with a geometric-series integra
that can be summed exactly, with the result

I 1~R1 ,Rj !5
d2fA2p

8p3 E
V3

dk1eik1•Ri j

3

(
K

1

~k11K !22k0
2

2D

12w1F(
K

1

~k11K !22k0
2

2DG . ~A7!
t

s

There is a common expression in the denominator
numerator in the integrand of expression~A7!, namely,
(K1/@(k11K )22k0

2#2D. For every pointk1 in the funda-
mental Brillouin zone, eachK when added to it moves it into
another zone. The terms for whichuk11K u happens to be
close tok0 tend to dominate, as we noted earlier. We the
fore group the complete set$K% of reciprocal lattice vectors
into two families:$Kb% consisting of those vectors for whic
uk11K u;k0 for all k1PV3 and the rest$K s%. By defining

s85 (
KP$Ks%

1

~k11K !22k0
2

2D, ~A8!

we may write

I 1~R1 ,Rj !5
d2fA2p

8p3 E
V3

dk1eik1•Ri j

3

(
Kb

1

~k11Kb!22k0
2

1s8

12w1F(
Kb

1

~k11Kb!22k0
2

1s8G .

~A9!
5-12
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In this form, we explicitly keep only those multiple
scattering channels represented by the family$Kb% that sat-
isfy the Bragg scattering conditions—and therefore conse
energy—and treat the rest of the channels, represented b
family $K s% which do not conserve energy, as providing
modified background contributions8 that can be approxi-
mately regarded as a constant:

s8. (
KP$Ks%

1

K22k0
2

2D.

Suppose there areNb members in$Kb%. Then, the sum
over $Kb% in the numerator in~A9! will shift the fundamen-
tal Brillouin zone toNb new positions that form a connecte
volume which, for largek0 , k0@2p/a, can be regarded ap
proximately as a spherical shell structure with width of t
order of 2p/a and radiusk0. This is shown in Fig. 7. As for
the same sum over$Kb% in the denominator, which is from
the multiple-scattering process, we will treat it in a sort
mean-field approximation, i.e., we will assume that the c
tribution to it from each of theNb new zones is the same
Therefore, we can approximate the integral~A9! as a volume
integral over a spherical shell of radiusk0 and thickness
2p/a, so that

I 1~Ri ,Rj !5
d2fA2p

8p3 E
shell

dk1eik1•Ri j

1

k1
22k0

2
1s8

1

Nb

12w1F Nb

k1
22k0

2
1s8G .

~A10!

By noting that the angular averaging ofeik1•Ri j over the
directions of k1 yields (sink1Rij /k1Rij)5(eik1Rij

2eik1Rij)/2ik1Ri j , we may express Eq.~A10! as

FIG. 7. Classification of the set of resonant reciprocal latt
vectors$Kb% shown for simplicity in two dimensions. The shade
squares mark the displaced copies of the fundamental Brillo
zone that contribute most significantly to the integral~A7!.
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I 1~Ri ,Rj !5
d2fA2p

4p2~12w1s8!iRi j

3F E
k02p/a

k01p/a

k1dk1eik1Ri j

11s8~k1
22k0

2!
1

Nb

k1
22k0

22
w1Nb

12w1s8

1E
2(k01p/a)

2(k02p/a)

k1dk1eik1Ri j

11s8~k1
22k0

2!
1

Nb

k1
22k0

22
w1Nb

12w1s8

G ,

~A11!

where the second integral results from a transformation
the integration variable:k1→2k1. The preceding two inte-
grals can be extended over the whole space by multiply
the integrand by a functionc(k1) which is essentially equa
to 1 whenk02p/a,k1,k01p/a and 2(k01p/a),k1,
2(k02p/a), and goes to 0 smoothly at the boundaries. W
thus have

I 1~Ri ,Rj !5
d2fA2p

4p2~12w1s8!iRi j
E

2`

`

dk1k1eik1Ri j

3

11s8~k1
22k0

2!
1

Nb

k1
22k0

22
w1Nb

12w1s8

c~k1!. ~A12!

The preceding integral may be evaluated by means of
residue theorem. The main contributions to the integral co
from the poles atk15Ak0

21w1Nb /(12w1s8), and rela-
tively little from the singularities ofc(k1), as we show in
Appendix B. We arrive in this way at the expression

I 1~Ri ,Rj !5
d2fA2p

4p~12w1s8!2Ri j

eia(k0)Ri j c„a~k0!…

[s~k0!
1

Ri j
ei [Re a(k0)1 i Im a(k0)]Ri j , ~A13!

where a(k0)5Ak0
21w1Nb /(12w1s8) and s(k0)

5(d2fA2p)/@4p(12w1s8)2#c„a(k0)….
We can resumI 0(Ri ,k0) too by a similar method. We firs

decomposek0, the incident wave vector, into its horizonta
components in thexy plane and component in theẑ direction
by writing k05(k' ,kzẑ). Then, we have

eik0•Ri5eik'•Ri1 ikzzi.

Noting thatzi , thez coordinate of a point inside the medium
relative to the entrance face, is always positive, we may
presseikzzi as

e

in
5-13
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eikzzi5E
2`

`

dkt

1

kt
22kz

2
eiktzi

kz

ip
, ~A14!

where a vanishingly small positive imaginary part tokz is
understood. Witheikzzi in such an integral form, the secon
term in the series expression ofI 0(Ri ,Rj ), Eq. ~32!, be-
comes

w1a3(
iÞ j

g~Ri ,Rj !e
ik0•Rj

5
w1a3

8p3

kz

ip (
iÞ j

E dk1

eik1•(Ri2Rj )

k1
22k0

2

3eik'•RjE dkt

eiktzj

kt
22kz

2
. ~A15!

Decomposing the vectorkT in its (x,y) and z components,
kT[(k' ,ktẑ), and using the same technique as that used
arriving at Eq.~A4!, we obtain

w1a3(
iÞ j

g~Ri ,Rj !e
ik0•Rj5w1

kz

ip
eik'•RiE dkt

eiktzi

kt
22kz

2

3F(
K

1

~kT1K !22k0
2

2DG .

~A16!

By noting that each higher-order term in expression~32! has
an identical structure as Eq.~A16!, except for a different
power of the term inside the square brackets, we can turn
~32! into an integral with a geometrical series in its int
grand, which can be easily summed leading to the expres

I 0~Ri ,k0!5
kz

ip
eik'•RiE

V1

dkte
iktzi

3

(
Kz

1

~kt1Kz!
22k0

2

12w1F(
K

1

~kT1K !22k0
2

2DG .

~A17!

In Eq. ~A17!, we have transformed the integration
I 0(Ri ,k0) over (2`,`) to integrals over successive on
dimensional Brillouin zones and then reduced those integ
to a single integral over the fundamental zoneV1 , 2p/a
,kt,p/a, by introducing one-dimensional reciprocal lattic
vectorsKz .

By following a procedure entirely analogous to that us
earlier to calculateI 1(Ri ,Rj ), we arrive at the following
approximate expression forI 0:
05661
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I 0~Ri ,k0!5

kz

ip
p i

12w1s8

11
s9w1Nb

2~12w1s8!

Akz
21

w1Nb

12w1s8

3eik'•Rieib(k0)zicT„b~k0!…

[L~k0!eik'•Riei [Re b(k0)1 i Im b(k0)]zi,

~A18!

wheres95($Gz%
1/Gz

22kz
2 , L denotes the coefficient in fron

of the exponential functions, Reb(k0) and Imb(k0) are,
respectively, the real and the imaginary parts ofb(k0)
[Akz

21w1Nb /(12w1s8) and cT , analogous toc in Eq.
~A12!, is defined to extend the fundamental Brillouin zo
V1 in Eq. ~A17! to the range (2`,`) so that the residue
theorem can be used to compute the resulting integral.

A continuous medium can be thought of as the limiti
case of a discrete medium in which the average separa
between two nearest constituents is so small relative to
wavelength of the incident light that the discrete structure
the medium is essentially invisible. In this limit,a!l0 , Nb
will be 1, sincek0 is already in the fundamental Brillouin
zone, ands8 of Eq. ~A8! will be zero. On the other hand
whena is comparable to or larger thanl0 , Nb can be very
different from 1 ands8 will not vanish. The discreteness o
the lattice is surely important in this case.

APPENDIX B: JUSTIFICATION OF c„k1…

AND cT„kt… IN APPENDIX A

There are many ways to choose the functionc(k1) intro-
duced in Eq.~A12!. It can, for example, be mimicked by th
following composite Fermi function:

c~k1!5F 1

e2(k12k01p/a)/k011
1

1

e(k12k02p/a)/k011
21G

1F 1

e2(k11k01p/a)/k011
1

1

e(k11k02p/a)/k011
21G ,

~B1!

where the functions in the first square bracket produce
proximately a flat platform of height 1 in the range (k0
2p/a,k01p/a), and the functions in the second bracket
the same over the range (2k02p/a,2k01p/a). With such
a choice ofc(k1), it is therefore valid to approximate th
sum of integrals in Eq.~A11! by the integral in Eq.~A12!.
However, as we extend the integral overk1 from the one-
dimensional real line to a two-dimensional complex plan
this composite Fermi function will have four series of pole
at

k02p/a2k0~2n11!p i ,

k01p/a1k0~2n11!p i ,
5-14
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2k02p/a2k0~2n11!p i ,

2k01p/a1k0~2n11!p i ,

where n’s are all integers. Since ineik1Ri j , Ri j is always
positive, the integration contour can be closed at infinity
the upper half plane without changing the value of the in
gral. Thus, only poles in the upper half plane will contribu
to the integral. Their contributions will, however, be of th
order ofe22p2u2n11uRi j /l0, which are very small even whe
Ri j is of the order ofl0. Therefore in using the residu
theorem, we do not need to include the contributions fr
any of the poles ofc(k1). A similar discussion applies tocT
in Eq. ~A18! as well.

APPENDIX C: CALCULATION OF L

By setting C05b0(12b0) and using the expression
~A13! and ~A18!, we can putL into the form

L5uL~k0!u2uL~k2s!u2C0(
i

e2bm(k2s)zi

3FC0us~k0!u2(
iÞ j

e2am(k0)Ri j
1

Ri j
2

e2bm(k0)zj

1C0
2us~k0!u4(

iÞ j
(
j Þk

e2am(k0)Ri j
1

Ri j
2

3e2am(k0)Rjke2bm(k0)zk
1

Rjk
2

1•••G . ~C1!

Notice that

1

Ri j
2

e2am(k0)Ri j 5
1

2p2E 1

kg
arctanF kg

am~k0!Geikg•Ri j dkg .

~C2!

We define bm(k0)52 Imb(k0), am(k0)52 Ima(k0), j
5C0us(k0)u2(1/2p2), andLp , the series in the square brac
ets in Eq.~C1!. We also note that

e2bm(k0)zi5
bm~k0!

p E
2`

` eikzi

k21bm
2 ~k0!

dk.

By using the one-dimensional version of the Poisson su
mation formula~A3!, we may replace the sum over expone
tial functions by a sum overd functions, which can be easil
integrated to yield

Lp5j
bm~k0!

p E
2`

`

dk1

eik1zi

k1
21bm

2 ~k0!

d~k1!

12jd~k1!
, ~C3!

where we have used the notation
05661
-

-
-

d~k1!5S 2p

a
D 3

(
K

1

AK'
2 1~k11Kz!

2

3arctan
AK'

2 1~k11Kz!
2

am~k0!

2E dkg

1

kg

arctan
kg

am~k0!
. ~C4!

In Eq. ~C4! $K% is the set of the three-dimensional reciproc
lattice vectorsK , andK' andKz their projections in thexy
plane and along thez axis, respectively. For terms with larg
K , uK u→`, the sum in Eq.~C4! may be approximated by a
integral that has the same divergent character as the inte
in that equation, and the difference between the two
bounded renderingd(k1) finite.

By substituting expression~C3! for Lp into Eq. ~C1!, we
obtain

L5uL~k0!u2uL~k2s!u2C0j
bm~k0!bm~k2s!

p2

3NxNyS 2p

a D E
V1

dk1(
Gz

1

~k11Gz!
21bm

2 ~k0!

3(
Kz

1

~k11Kz!
21bm

2 ~k2s!

d~k1!

12jd~k1!
, ~C5!

whereNx ,Ny , andNz are the numbers of lattice sites alon
x̂, ŷ and ẑ, Kz and Gz represent thez components of the
one-dimensional reciprocal lattice vectors, andV1 is the fun-
damental Brillouin zone, (2p/a,p/a), along thez axis.

By defining

Dk5k'2k2s' ,

Dkz5kz2k2sz,

DRe5Reb~k0!2Reb~k2s!,

D Im5Im b~k0!1Im b~k2s!,

using Eqs.~A13! and ~A18!, and following the same proce
dure as that used in derivingL, we find

C5C0uL~k0!u2uL~k2s!u2jS D Im

p D 2

NxNyS 2p

a D E
V1

dk1

3F(
Gz

1

~k11Gz!
21D Im2G 2

d1~k1!

12jd1~k1!
, ~C6!

where
5-15
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d1~k1!5S 2p

a D 3

(
K

1

A~Dk1K'!21~k12DRe1Kz!
2

3arctan
A~Dk1K'!21~k12DRe1Kz!

2

am~k0!

2E dkg

1

kg
arctan

kg

am~k0!
. ~C7!

Note thatd1(k1) is different fromd(k1).

APPENDIX D: CALCULATION OF L f AND Cf

The difference betweenL f andL, and betweenCf andC,
is that L f and Cf describe the forward scattering of ligh
while L and C represent the backward scattering of ligh
Therefore, I 0(Ri ,k2s) given by Eq. ~37!, rather than
I 0(Ri ,k0) given by Eq.~36!, is the propagator that appea
in L f andCf . They are expressed as the series

L f5C0
2(

iÞ j
I 0* ~Ri ,k2s!I 0~Ri ,k2s!I 1* ~Ri ,Rj !

3I 1~Ri ,Rj !I 0* ~Rj ,k0!I 0~Rj ,k0!

1C0
3(

iÞ j
(
j Þk

I 0* ~Ri ,k2s!I 0~Ri ,k2s!I 1* ~Ri ,Rj !

3I 1~Ri ,Rj !I 1* ~Rj ,Rk!I 1~Rj ,Rk!I 0* ~Rk ,k0!I 0~Rk ,k0!

1•••, ~D1!

Cf5C0
2(

iÞ j
I 0* ~Ri ,k2s!I 0~Ri ,k0!I 1* ~Ri ,Rj !I 1~Ri ,Rj !

3I 0* ~Rj ,k0!I 0~Rj ,k2s!1C0
3 (

iÞ j , j Þ l
I 0* ~Ri ,k2s!

3I 0~Ri ,k0!I 1* ~Ri ,Rj !I 1~Ri ,Rj !I 1* ~Rj ,Rl !I 1~Rj ,Rl !

3I 0* ~Rl ,k0!I 0~Rl ,k2s!1•••. ~D2!

The seriesL f may be expressed in terms of the quantityLp ,
we have defined and calculated in Appendix C,

L f5C0uL~k0!u2uL~k2s!u2(
i

e2bm(k2s)(zf2zi )Lp

5C0uL~k0!u2uL~k2s!u2j
bm~k0!bm~k2s!

p2
NxNyS 2p

a D
3E

V1

dk1(
Gz

1

~k1
21Gz!

21bm
2 ~k0!

d~k1!

12jd~k1!

3(
Kz

1

~k11Kz!
21bm

2 ~k2s!
eik1zf , ~D3!

wherezf is thez coordinate of the final layer of the atoms
seen by the incident light relative to the entrance face of
05661
.

e

medium, and Gz and Kz denote, as before, the one
dimensional reciprocal lattice vectors. On the other hand,Cf
can be expressed as

Cf5C0uL~k0!u2uL~k2s!u2e2bm(k2s)zf
1

2p2

3FC0us~k0!u2(
iÞ j

eiDk•RieiSzi2Dzie2 iDk•Rj

3E dks

1

ks
arctan

ks

am~k0!
eiks•(Ri2Rj )e2( iS1D)zj

1C0
2us~k0!u4 (

iÞ j , j Þ l
eiDk•Rie( iS2D)zie2 iDk•Rl

3
e2am(k0)Ri j

Ri j
2 E dks

1

ks
arctan

ks

am~k0!

3eiks•(Rj 2Rl )e2( iS1D)zl1•••G
[C0uL~k0!u2uL~k2s!u2e2bm(k2s)zf

1

2p2
Cf s , ~D4!

whereCf s denotes all terms within the square brackets in
line just preceding it and

Reb~k0!1Reb~k2s!5S,

2Im b~k0!1Im b~k2s!52D.

Using the technique we adopted in Appendix A, we can
rive a geometric-series expression for the integrand ofCf s ,

Cf s5j
D

p (
i

e2DziE dk
eikzi

k21D2
d2~k!

1j2
D

p (
i

e2DziE dk
eikzi

k21D2
d2

2~k!1•••,

~D5!

where

d2~k!5S 2p

a D 3

(
K

1

A~Dk1K'!21~k2S1Kz!
2

3arctanA~Dk1K'!21~k2S1Kz!
2am~k0!

2E dks

1

ks
arctan

ks

am~k0!
. ~D6!

The geometric series is easily summed, and the follow
closed-form expression established forCf ,
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Cf5C0uL~k0!u2uL~k2s!u2e2bm
,(k2s)zfjS D

p D 2

NxNyS 2p

a D E
V1

dk
d2~k!

12jd2~k! F(Kz

1

~k1Kz!
21D2G 2

, ~D7!

wherebm
,5 smaller of Imb(k0) and Imb(k2s).
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