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Light scattering from a randomly occupied optical lattice.
II. The multiple scattering problem
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In this paper, we study the problem of multiple scattering of light from a randomly occupied optical lattice,
thereby extending the first-order Born analysis of the previous paper. A full multiple-scattering analysis is
essential to a complete understanding of the nature of light propagation inside a medium. Our calculations
show that the incident wave, when resonant with the atomic medium, is rapidly extinguished due to multiple
scattering. The decay constant depends critically on the incident wavelength, the lattice constant, the average
number density of atoms, and their polarizability. Both the Bragg scattering amplitudes and directions are
modified as a result of multiple scattering. Because of the random site occupation of an otherwise regular
lattice structure, a coherent enhancement of the scattering cross section is also predicted to occur along a
discrete set of directions that are related to the strictly backward direction by reciprocal lattice vectors.

DOI: 10.1103/PhysRevE.67.056615 PACS nunierd2.25.Dd, 42.25.Fx, 42.50.Ct

[. INTRODUCTION random medium and how the randomness of site occupation
influences multiple scattering of light in an otherwise perfect
In the previous papelrl], we showed that by analyzing optical lattice. It has been previously noted that strong local-
the singly scattered light from a partially occupied opticalization of photons may occur in a highly predictable manner
lattice, we can obtain important information about the lattice,n @ frequency window in certain disordered superlattice mi-
such as the lattice constant, the curvature of the trapping sitgrostructures of sufficiently high dielectric contrgg}. Simi-
potential, and the number of trapped atoms. We also studie@’ nonperturbative phenomena are worth investigating for
the angular coherence of the scattered light at both the furRUr randomly occupied lattice structure as well. '
damental and first sideband frequencies, and explained with & show that the wave transmitted into the optical lattice
the help of a detailed calculation the phenomenon of spectrzﬂe(_:ayS in the forward direction as a re_s_ult of mult|pl_e S.C""t'
line narrowing of the sidebands. In this paper, we relax thiéenng. The decay constant depends critically on the incident

single-scattering Born approximation and consider all ordergvavelength, the Ia_tt|ce constant, the average number de_nsny
of scattering. of atoms, and their polarizability. Both the Bragg scattering

Academi iosity is but . tivation f q amplitude and the directions in which coherent scattering
_ Academic curiosity 1S but a minor motivation for our de- 5y g place may be significantly modified from the familiar
sire to treat the scattering problem exactly. A nonperturbat'v%orn-approximation result when scattering is included to all

treatment is largely unavoidable in addressing the detaile@ qers Multiple scattering alters incoherent scattering as
manner in which the incident wave itself propagates insidgye|| |eading, in particular, to a coherent enhancement of the
the nonuniform lattice based medium. Even in a uniformseattering cross section along a discrete set of directions that
medium light propagation can still be treated as a multiplezre determined by reciprocal lattice vectors. This enhance-
scattering phenomenon with free-space propagators, an eyent, akin to that seen only in the strictly backward direction
ample being the well known optical bandgaps in optical crysfor a continuous random mediufd—7], occurs for the light
tals [2,3]. For a random medium which has absolutely nothat is elastically scattered at the incident frequency.
regularity, the multiple-scattering viewpoint predicts impor-  We organize our paper as follows. In Sec. I, we formulate
tant concepts such as enhanced backscattering and photouar problem and evaluate the electric field at an observation
localization [4—8] that result from the fact that even in a point in the form of a multiple-scattering series. By express-
random medium, multiple scattering does not always corruping the microscopic density function as the sum of its occu-
the phase of the light. In particular, along any randompation averaged value and the deviation about this average,
multiple-scattering path and its time-reversed counterpariwe decompose in Sec. lll, the multiple-scattering series fur-
the propagation phases are identical. This viewpoint leadther into its coherent, incoherent, and mixed components.
naturally to regarding light propagation in the random me-The different multiple-scattering series that result in this way
dium as a diffusive process in which enhanced scatteringnay be resummed in an approximate way, as we show in
implies a larger diffusion coefficient in the backward direc- Sec. IV. To calculate the intensity averaged over the random-
tion. This is the phenomenon of weak localization of light. ness of the occupation of the lattice, it is essential to know

A partially occupied optical lattice is a random medium the statistics of the density fluctuations. We devote Sec. V to
with regularity, where the randomness often comes from am derivation of these statistics. The mean intensity of light,
uncontrollable distribution of the trapped atoms among theobtained in the Lamb-Dicke limit by averaging over the den-
lattice sites. It is desirable to investigate how this regularitysity fluctuations, is discussed in Sec. VI. We present our
alters the properties of light propagation relative to a totallyconclusions in Sec. VII.
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Il. FORMULATION OF PROBLEM within the atomic linewidth, and we may replabg(t) ap-

We treat the incident wave classically, and the scattere@roximately by—iwbj(t) in Eq. (4), and solve for;(t) as
field and the atoms quantum mechanically. The two-level

atoms are assumed to be trapped at the bottom of parabolic d-epeloli-iotyg. Eg+)(|i 1)
potential wells in a simple cubic lattice and to radiate like bi(t)= . . (5)
point electric dipoles when excited by the radiation field. The f(io—iwo=7)
electric fieldE¢(r,t) scattered by the trapped atoms, when
excited by an incident plane wave of frequengyobeys the By substituting Eq.(5) into Eq. (3), we get an integral
Maxwell wave equation, equation forEg+)(r,:U),
2(+)
VT %ﬁ(”) B ) evidt o)-d
< r,w—z\/_ © f (r,rg,w)-
4
=—dw’X Bib(H)s(r—1), (D) d- €
2 -
c i XWZ Bio(ro—1)
wherel,=R;+r,(t) denotes the vector location of the atom 24
in the well centered at thigh lattice site at positiolR; , 3; is X gikoli—iotgy 4 w T
0 if the sitei is empty or 1 if it is occupied; is the energy c2\2m
lowering operator for the atom in thi¢h site, andd is the
atomic dipole moment matrix element. We find it convenient XJ ei;tdtf G(r 1o, )-d
to work in the frequency domain. Fourier transforming Eq.
(1) with respect to time gives d
~\2 m E Bio(ro—1;)
V><[V><E§+)(r,z))]—(—) E(r, o) B
c XE(1;,tdrg. (6)

4 d -~
:§w2 27 Z IBiJ bi(t) 8(r —Ii(t))e'dt. (2)  The first term on the right-hand side of E) represents the
field scattered by the atoms in response to the incident field

With the help of the Green’s functio® [10] for the vector alone, namely, the first-order Born scattering, while the sec-

Helmholtz operator, Eq2) may be expressed in the integral Qnd term contains all of the higher-order scatFering contri-bu-
form P q2) may P ¢ tions. Althoughy actually depends on the sideband being

observed 1], we ignore that dependence here for simplicity.
This dependence can always be introduced formally at a later

EN(r, o) e'“tdt point.
2\/ Let us introduce in Eq(6) the notations
Xf G(r,ro,Z))'dZi bi(t)Bié(ro_li)dro. . A w2
3) V27 it(io—iwg—7y)
The higher orders of scattering, neglected in R&f, can be b=d-
taken into account by noting that each atom responds €0
to the total field consisting of the incident fiel,,.(r,t)
=exp(ky-r—iwgt) and the field scattered by all other at- s=fb,
oms,
bi()=(~Ts— PBi(t)~ 1 -[E O+ EC(L 0. N(ro.0)=2 A= h(t)).

4
Note thatb;(t) is driven not just at the frequeneay of the The .function n(ro,t)' reprqsents the microscopic number
- . . . — density of the occupied lattice. Because of the randomness of
incident light but also at the motional sidebands nw, N 5 4hig density is also random, and its fluctuations, which
=1,2, ... ,wherew is the natural frequency of oscillation of e shall discuss later, play an essential role in determing the
the atom in its trapping potential well. Whers w, the first  fluctuations of the scattered light intensity. In terms of the
few sidebands, those that are significantly excited, all lie welpreceding notations, E@6) takes on a simpler appearance,
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as long asw/c times the lattice constant is large, so the
near-zone and intermediate-zone fields may be ignored. The
field polarization is typically not as essential as the field

Eg+)(r,z))=5f e‘:"‘dtJ G(r,rg,w)-dn(rg,t)ekoro-iotgr

f ~ - h . . . )
it ) phase, the latter being correctly included in the scalar ap
* JzTJ € dtf G(r.ro,@)-dn(ro,)dro proach. Since observation is typically made far away from
the sample lattice, we can, furthermore, use the far-field ap-
—iw'ty, 4. () / proximation to simplify the full tensor form of the Green’s
XJ € do’d-E¢(ro, ). @ function that describes the final scattering step leading to the

. . . ) observed field, i.e., set
We can iterate this integral equation to write out the scattered

field as a multiple-scattering series. To simplify our analysis,

however, we first reduce the vector equati@nto an essen-

tially scalar form by making certain reasonable approxima- — G(ry,r»,@)=(1—r;r;)
tions. We replace each occurrencediG(rq,r,)-d in any

intermediate scattering step by its corresponding scalar-field

i(wry/c)a—i(wlc)ry-rq
47Trle € ’ (9)

value -
wherel is the unit dyadicr,=r4/r is the unit vector in the
d-G(rq,rp)-d=d?gy(rq,rp, ), (8)  observation direction anu, is the distance between the ob-
- servation point and the origin of the lattice.
wherego(ry,r,) = (1/4m|r,—r,|)e'“l"~r2le is the propaga- With these approximations the following simpler

tor for the scalar field in vacuum. This approximation is goodmultiple-scattering series results:

eik;r

E(r,w)=
S 4arr -

~ ) - . ) f ~ : -
e""‘dtJ droe Karorn(rg, t)elkoromioty fe'wtdtJ droe ka0 Tn(rg,t
esf 0 (ro.t) oo & 0 (ro.t)

f\? -
—| e | €“tdt
\/277) J

xf e—ikB’O'Fn(ro,t)drof dw’e_i“”tf dtlei“”tld‘lJ Jo(ro,ry,")drin(ry,t;)

><J dw’e’iw"j dtlei“”tleJ 9o(ro.Fq, 0" )dron(ry,ty)e oot

: (10

XJ dw”e_i“’"tlf ei“’"tzdtzf Go(r1.r2,0")dron(ry ty)elko 2 oty ...

wheree,=s[d- (I —rr)] andk;,= w/c. As we saw in Ref[1], the oscillatory motion of the atoms in their traps leads to the
sidebands in the scattered light that are centered at frequemciesw, n=1,2,.... In atypical experimentw~2m
X 10* rad/s, sow/c~10 % m~1. A real optical lattice is produced by counterpropagating laser beams with valmef

interaction of the order of £ 1x 1 cn?. Thus, /c)Av3~10"%<1, and it is safe to replace the,»”, . . . inside theyy's
by w. With this replacement, we may rewrite H4.0) as

e

ikor Zfes
4arr

esf ei;tdtf droe_ik;ro'Fn(ro t)eiko-ro—iwt+ d f ei;)tdtf droe_ik;’ro';n(ro t)
1 \/2_ 1

a
fd? |2 -
) esf elwtdt

V2m

Xf e‘ik;rO'Fn(ro,t)drOJ dw’e‘i“"tf dtle“"/tlj go(ro,rl,w)drln(rl,tl)J do’e @

E(r,0)=

Xj dw’e_i“’/tf dtleiw/tlf 9o(To,rq,w)drin(ry,ty)eko oty

xf e“""tZdtzf 9o(r1,r2,0)dron(ry,ty)eko 2oty ot (1)

Since the integrations over the frequenci€sw”, ... produces functions in the associated time differences, the multiple
time integrals collapse into a single time integral, and we have
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eik”r

[}

4ar S

E{)(r,w)=

fei:"‘dtf droe‘ik;ro'Fn(ro,t)eiko"o‘i“"+d2f\/EJ ei:”tdtf dree (@90 Tn(ry 1)
xfgo(ro,rl,w)drln(rl,t)eiko*riwt+(fdzﬂ)zf ei:"tdtf e koo Tn(rg,t)drg

ngo(royrl,w)dhn(rl,t)f go(rl,rz,w)drzn(rz,t)eiko'rziwt"‘"'}

elkor - L -
=1 esf e'(“’“")tdtf droe a0 n(ro, ) ES (1o, ), (12

where the symboﬁgf)(ro,w) represents the field generated on iteratively solving the following integral equation:

Egz><r,w>=Emc<r>+d2fﬂf Jo(r.F1,0)n(r,HEL ) (ry,w)dry, (13)

andE;.(r) is defined ag'*o'".

Equation(12) represents the complete response of the optical lattice to the incident radiation. It carries information not only
about the medium, i.e., atomic motion and distribution, but also about the radiation field itself, in particular, about how the
incident light is multiply scattered as it propagates through the lattice. To determine the statistical properties of the radiation
field, we will first decompose the microscopic density function and thus the radiation fields (hZE@to a convenient form.

[ll. DECOMPOSITION OF THE MICROSCOPIC DENSITY By transposing the second term on the right-hand side of Eqg.
AND RADIATION FIELDS (15) to its left-hand side, we may express it in terms of the

. . . inverse linear operator
In the medium we consider, the atoms reside on regular P

lattice sites, although since whether a site is occupied or not - a A
can only be stated probabilistically, we have a random me- K=(1—d2f\/ﬂnogo) '
dium. The randomness is described by each varighle
which takes on the value 1 when thé site is occupied and
0 when that site is vacant. By denoting the average occupa-
tion fraction of each site by,, we can separate(r,t) into
an average occupation part and a fluctuation part,

as the more compact operator relation
B = RE, o+ d2f V27K goonEL. (16)

The symbol 1denotes the identity operator. We denote the
first term on the right-hand side of E¢L6) asl, and the
n(r,t)=>, B;s(r—1(t)) propagator in the second term bs The latter is obtained
i from the free-space propagator by dressing it, so as to ac-
commodate the effects of the avearge-density medium. We
=Bo> Sr—1(1)+ 2 (Bi—Bo)sr—1(1)) |f”nay rewrite Eq(16) inside the lattice in its normal expanded
i i orm as

=ng(r,t)+on(r,t), (14 5
Eg)(r,w)=|o(r,t;ko)+f L4(r,ry,t)on(ry)
with (én(r,t))=0.

In terms of the linear integral operatgp, defined by its XEG(ry,w)dry, 17
action on any functiori(r) as the following integral over the
medium volume: where
~ . — aikger 2
Gof= [ go(r 11,01y, (0ol =405+ 2 [ olro.ry el

ikg-r 2¢ | 2
and with the help of Eq(14), we may symbolically write Eq. xefotidr + (d*f y2m) Jgo(ro,rl,w)

(13) as

= ~ ~ A ~ XnO(rl't)drlf gO(rler!w)
EL)=Einet+ d?f\2mgonoEl; )+ d?f \2mgesnEL) . '
(15 Xdrong(ra,t)e'ko a4 ... (18)
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represents the incident wave multiply scattered by a uniundergoing its first scattering from a fluctuation, the field
formly occupied lattice with site occupation fraction being propagates in the medium as the refracted incoming wave;
Bo at each sitd11]. Such a wave may be regarded as thebetween two such scatterings, the field propagates as a re-

refracted wave. The dressed propagator fracted spherical wave; and after the last such scattering the
field propagates as a refracted outgoing wave.
11(ro.r1,) =d?F\27go(ro, 11, @) + (d?f 21)? The scattered field fluctuates because of site occupation
fluctuations. A study of the statistics of those fluctuations,
Xf Go(ro,rz2,@)Ng(rz,t) which we undertake next, will then directly yield the statis-
tics of the scattered field.

Xdrygo(ra,ri,w)+--- (19
IV. DENSITY STATISTICS ON A LATTICE

represents the refraction by the uniform lattice of a spherical
wave scattered by the density fluctuationratbefore the
refracted field gets rescattered by fluctuationsyat

By substituting Eq(17) back into Eq.(12) and collecting

By the very definition of the density fluctuatiosn, its
first moment vanishes,

terms according to the number of timéa occurs in each (on(r,t))=0. (22)
term, we obtain the following expression Bf": Its second moment can be calculated by noting that
~ - - . .
E) rw)e fel(wfw)tf e karTo (1 t
s (I o)xe o(fo,t) <n(r,t)n(r1,t)>=ij2:l (BiB;)S(r—=1)8(ry—1))

X1o(ro.tikg)drg+ | ei(@=@)tdt N
olfo te)o fe =2 (B)ar=1)a(r=ry)
Xf drolz(ro,t;Z))5n(r0,t)|0(r0,t;ko) N
) + 2 (BB 1) a1 —1y)
+Jei(‘"“")tdtJ drolo(ro,t;@)dn(rg,t) !
=Bo>, S(r—1)s(r—ry)
xf 11(ro.r1,)on(ry,)lo(ry,tikg)dry+-- - |, =1
N
(20) + B8 S(r—1)a(ry—1y), (23)

1#]
where
since B°=p; and two different sites are uncorrelated:

(BiB;)={(Bi){B;) if i#]. On the other hand,

<n(r=t)n(rlit)>
=([no(r,t)+8n(r,t)][ng(rq,t)+8n(ry,0)71)

I2(ro,t;Z))zefile'rOerzf\/ZTrf e K Ting(ry )
Xgo(rl,ro,w)drl+"' (21)

describes the wave that proceeds to the observation point
after the very last scattering from the medium density fluc- =nNo(r,t)ng(ry,t)+{n(r,t)on(ry, 1))
tuations aftry. This wave is a superposition of more elemen- N
tary waves scattered by the uniform lattice 1,2. times =B2 " S(r=1)8(ry—1,)+(én(r,t)an(ry,b))
before propagating to the observation point. ij=1

Equation(20) is a conveniently rearranged form of the N N
multiple-scattering serie$12). The three propagators we _ a2 _ _ 2 _ _
have introduced, namely,, 1, andl,, represent the re- _’802‘1 A(r=l)e(ry r)+’8°g’j or=lye(ra=1p
fracted incoming wave, the refracted spherical wave, and the
refracted outgoing wavén the far field, respectively. The
refraction process can be regarded as the renormalization of ,
the incident field by the uniform lattice. With this interpreta- BY eduating Eqs(23) and(24), we have
tion of the propagators, we can give physical meaning to the N
various terms of Eq(20). The first term in Eq(20) is the _
amplitude spectrum of the coherent, multiply scattered Bragg (an(r)én(ry))=Bo(1—Bo) 8(r — rl)i; a(r=1y).
field. The second and later terms describe the spectrum of the (25)
first- and higher-order scattering of such multiply scattered
Bragg field from the same lattice but with sites that have dt is worth noting thaiBy(1— B,) is nothing but the variance
fluctuating occupation fractiom8; = B8;— 3, at sitei. Before  of the occupation of any one sit&(8— 8,)?). Its presence

+(n(r,t)dn(rq,tb)). (24

056615-5



W. GUO AND S. PRASAD PHYSICAL REVIEW E57, 056615 (2003

along with 8(r —r ) reflects the fact that the occupation fluc- _N'l_’ > 24 . 1_»
tuation at a site is only correlated with itself.
The following expressions may be similarly derived for
the higher-order correlation functions:
- — - @ — - P— P —— - P— P —— O —
(én(r,t)dn(rq,t)én(r,,t)) 1 ’ 3 4 1 2 3 4

3 FIG. 1. The fourth-order “ladder{left) and “cross” (right) dia-
=({(B—Bo) >|:21 o(r—1p)o(ry—li)o(ra—1), (26) grams. Arrows indicate the time ordering of single-scattering events
and straight lines connect identical scatterers.

(én(rq,t)dn(r,,t)n(rz,t)dn(ry,t))
equivalent wheng, for one medium has the same value as
(1- B,) for the other.
The §-function factors in each term on the right-hand side
of Eq. (28) represent the fact that each atomic position is
"2 only correlated with itself. The notatioR,, , , . indicates
+H{(B=Bo)%) ;J o(ry=1) o(ra=1) o(rs=—1j) a permutation of the set of positions,rq, ... .,r,, where
a particle can reside, a different set nfposmons where
another particle can reside, and so on until rajpositions

N
=((B=Bo)) 2, 8(r1=1)8(ro=1)8(r3=1) 8(ra—1)

8(ra—1) +((B—Bo)H22, 8(ri—1) are exhausted. Such permutations must then be summed over
1] all possible nonnegative integral valuesigf«, ¢ that add
X 8(rg—11)8(ry— 1) 8(ra=11) +{(B—Bo)?)? :i?etso n, and over all possible particle locations or lattice
In calculating the mean intensity of scattered light, we
XE O(ri=1)a(ry—=1i)o(ro—1;) é(rz—1;), (27)  will need to specialize Eq(28) to include only those con-
i#] figurations for which the field phase in each multiple-

scattering term of Eq20) is exactly canceled by the phase
of the complex conjugate of that term. In a random medium,
(én(ry)--- 5n(rn)>zz Poco .. MMM, - whether on a lattice or not, this can only happen for a par-
{P} ticular multiple-scattering path and its exact time-reversed
version. This observation implies that in the mean intensity,

N : - ; o
(i) only even-order moments will contribute afid) if scat-

X#j#gm:l ory=h)- - tering paths with loops are not permitted, then only terms
with indices»,k,0, ... each equal to 2 on the right-hand
XO(r,=1i)é(r,s1—1j)- -+ side of expressioli28) will contribute. These nonvanishing
contributions correspond to the ladder and cross terms
XO(r 4= 1) O s s =) - - - [6,7,14, which result from the interference of an optical path
with itself and with its time-reversed version, respectively.
XNyt o=l -+ 28  An example of the fourth order ladder and cross diagrams is

shown in Fig. 1. We can drop all other configurations since
The preceding expressions involve the various moments ahey only make an insignificant contribution to the mean
the site occupation fluctuatioi ,=((8—B0)"). Since 8  intensity, either because of phase randomness or because
can only take the values 0 and 1, the latter with probabilitythey represent field contributions in which a particular atom
N/No=Bo, (BP)= P, for all p=1. This allows us to write s visited more than oncéoop diagramsin the scattering
down an explicit expression favl ,, process. The justification for neglecting the loop diagrams is
that in a typical optical lattice with an average occupation
N rate that is very low,8,=0.1, a photon has a negligible
=3 ( ) (BP)(—By)" P chance to be scattered back to t_he_atom from which it was
p=0 scattered before. In the opposite limit®§— 1 too, the loop
diagrams do not contribute much to the scattered light inten-
=Bo(1=Bo)"+(—1)"Bo(1~Bo). (29 sity, because the density fluctuations once again are small as
we noted earlier. Of course, when optical gain is present,
Note the transformatioM ,— (—1)”M , under the symmetry loop diagrams become important and, in fact, power random
operationBy,— (1— By). This represents the fact that the de- lasering[13].
gree of randomness correlates not so much with the actual In view of the preceding arguments, we may replace the
occupation rates as with the departure from regularity of thdull sum (28) by only those terms in it that correspond to the
lattice based medium. Such departures for two media arkadder and cross terms in the mean intensity
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(8n(ry)- - &n(rn))=[Bo(1-Bo)I"?

N
X 2 E Pooo, ...

XFO(rO)J’ |f(r0-r1)|1(%:&)%("1)'3("1:"0)

i#j#ks =1 {P) X'o(rlyko)dr1+,3%(1_,30)2f drol3(ro, o)
Xo(ry—ry)o(ra—r)
X 8(rg—1;)8(ra—r;)8(rs—ry) X%(ro)lo(ro,ko)J 17(ro,r)la(ro.ry)
XS(rg=ry)---. (30 _
Xno(rl)lé(fl,ko)lz(rl,w)drﬁ~~-}, (31

V. THE MEAN INTENSITY OF THE SCATTERED LIGHT

with E{)(r, ) found in Sec. Ill, it is straightforward to  Where no(r)==;5(r—R;), and the ellipses stand for

calculate its Hermitian adjoiri’;(‘)(r ), and then to con- terms that result from the sixth- and higher-order fluctua-
S ’ ’ . . . . - .

struct the average of the normally ordered product of the twdlons- One can re'ad|ly identify the first term as representing
to compute the mean intensity of the scattered light. We ast-he. Bragg refle.ctlon of the r_efracted wave from a regular
sume the Lamb-Dicke limit of sharply localized atoms to lattice with a gmform occupatiofo for each site, the seconq
simplify our calculation. This is the typical experimental term as the single-scattering term, the third term as the first
situation[15], for which motion of the atoms in their trap- ladder term, the fourth term as the first cross term, and so on.
ping wells r’nay be neglected. The time dependence of _Equation (31)_ is_rather invol_ved, _bu_t insight may be
n(r.t), lo, |5, andl, arising from the motion of the atoms gamed by co_nS|der|ng some_of its _buno_llng blocks first. The
can thus be ignored. The integration over time in E2f) first of them is the refracted incoming field

generates the functiof(w— ) corresponding to an elastic kol R
multiple-scattering process, consistent with the Lamb-DickeI (Fo. ko) = €010+ w83 e'kolfo~R; .
limit we adopt here. Our problem, in fact, reduces formally °* ©"° 1% 4 axlry—R|
to a classical problem.

When use is made of E¢30), the following occupation glkolfo™Ril +1kolRi =R

iko-Ri

2.6 iko Ri 1 ...
average results: Twaa ; 4mlro—Ri|47|R —R;| e
(ED(r,0) B (ry, ) (32
e, e Bﬁf droei(w/c)iroﬁo(ro)lS(ro,ko) where we have defined that; = B,(d?f y27)/a® anda is

the optical lattice constant. It is understood that whgis a
L lattice site, then one must exclude that site fromitsems.
><J drge @O Ton (ri)o(ry ko) + Bo(1—Bo)  The field contributioni , is formally related td,

x [ drot 5 ro,0015 (1o Kol oro. 0l ofFo.ko) '2To.@)=lolTo.K-o).

where we have sek_ =—kor=—ks. The intermediate-

XE’(rOH'BS(l_'BO)ZJ drol2 (ro, @)l (o, @) scattering term , takes the form

Wla3 eik0|r0—r1| (Wla3)2 eik0|r0_Rk| eiko‘Rk_rl‘
+ +
Bo Am|rg—ry] Bo K Amlro— Ry 47|Ry—r4]

I1(rg,re)= (33

In terms of these building blocks, the mean intensity of light scattered from the lattice is seen to have the following
structure:
. 2
loc| Bo 2 €™M0 Ril (R ko) +Bo(1—/:?o)2i lo(R; ko) 1§ (Ri ko)l o(Ri k)15 (R k) + B5(1—Bo)?

X; 15 (Ri k-9 o(Ri k-1 (R, R)TL(R RDIG (R ko) lo(R; ko) +B3(1— Bo)*

Xi;ﬁ%#k 15 (Ri k_9)lo(Ri k-1 T (Ri,R)I1(Ri , RDIT (R R 1(R; ,RIE (Ry ko)l o( Ry ko) + - + - + B5(1— Bo)?
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ng |3(Ri K_9lo(R; !kO)It(Ri ,Rj)ll(Ri 'Rj)lg(Rj ’kO)IO(Rj 1k—s)+,33(1—,80)3

X > ) 15 (Ri,k_)lo(Ri ko) 17 (Ri , R T1(Ri ,RIT (R , R 1 (R ,Ri) 15 (Rie ko) To(Rie K )+ - - -

EANE

The first term yields the coherent, multiply scattered Bragg

| 2
intensity. The second term describes the light intensity scat- C=Co|A(ko)|2|A(k—s)|2§( )

tered singly by the density fluctuations. The sums that follow
are of two kinds. All of the sums before the first set of el-
lipses represent the ladder serigsvhile the remaining sums
represent the cross seri€s

The coherent multiple-scattering serigsand|l, may be
approximately resummed, as we show in Appendix A, as

(34
[
T
27 1 2
- K
XNXNV( a )Jnld ! g (ky+G,)2+ (A Im)?
dq(kq)
1= gdy(ky) 39

1 )
(R Ry =s(ko)—e/Fectomtimetolfy, - (35)

ij

The various quantities appearing in expressi@ds—(39)

IO( Ri ka) — A(ko)eikj_-Riei[Reﬁ(k0)+iIm B(ko)]zi. (36)

We can see from Eq35) that multiple-scattering from the

are defined in Appendixes A and C.
In view of expression$38) and (39), the total scattered
light intensity averaged over the density fluctuations reduces

uniform medium causes an exponential loss of amplitudg; ihe closed form

when a spherical wave propagates from one lattice site to
another. The characteristic distance over which the amplitude
decays is given by 1/Imr(kg). The refracted incoming wave

Il too decays with a similar characteristic constant
1/Im B(kg) in the z direction.

If r is in the backward direction, thela_g is in the for-
ward direction, and vice versa. The two situations are quali-
tatively different, however. For the forward scatterimgis
alongkg, andl, takes on the form

lo(Ri k-s)
= A(k_g)elk—s Ritik_szrgilRe Ak +ilm B(k_9](z-2)
(37

where z; is the z component of the last layer seen by the
incident wave. By contrast, for the backward scattering, EqQ.
(36) can be employed directly by replacikg with k_.

With the help of the preceding two expressid$) and

(36), we are ready to calculate the ladder and the cross series.

These calculations are rather long and tedious, although the
physics ofL and C is well understood. We will therefore
leave the detailed derivation to Appendix C, and only write
down the final expressions farandC here,

m(Ko) Bn(K_s
L=|A (ko) 2| A (k_g|2Cg Zntie mlos)

1
f dk; >,
2

G, (ki+G,)2%+ B2 (ko)

X NNy | —

1 d(ky)
X% (ki +Kp) %+ Bhk ) 1 €d(ky)”

(38)

056615-8

R 2
/302 e ko Ril (R ko)

+COZ lo(Ri ko) 13 (Ri ko) lo(Ri koI5 (Ri ,K_¢)

FColAKoPIA K. en,N, B0 ntos) (27
T a
L d(ky)
XJQldklé (k1+Gz)2+Bﬁ1(k0) 1—-¢£d(ky)
1
X% (ky+K,)%+ B2 (k_s)
2 9 Alm\2/2m
+ Col A(ko) P A (k- PENNy| —=] | =
1 2
Xf(zldkl é (kl+Gz)2+(Alm)2
di(ky)
1-édy(ky)” (40)

The first term represents Bragg scattering of the refracted
light. It may be computed straightforwardly as
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2_ 2A K P 1_005{(k—sx+kj_x)(Nx+1)a]1_COS{(k_Sy+kly)(Ny+1)a]
_BO| ( O)| l—COE{(k,SX-I—kLX)a] 1—00i(k73y+kly)a]

[302 e_ikoF'Rilo(Ri Ko)

{1+ BN+ D31 — 2 cod[k_.,+ ReB(ko)]
1
e~ 'mAkoar) —2cog (k_,+ReB(kg))ale mAkoa) |
(41

X (Nz+ 1)a}e‘ Im B(Kg) (N + l)a)}
1+

The second term represents the first-order scattering by tHexcept for a phase functiogl“:? inside the integrand., ; is

fluctuations in the occupation of the lattice sites the same a&. The cross term€ and C; are similarly re-
lated, but the presence & fm(V% in C; makes it very
l= COE lo(Ri ko) I3 (Ri ko) lo(Ri K- o)1 3 (Ri ,k_) small relative toC. This is because the fields multiply scat-
i

tered along a particular path and its time-reversed counter-

B 2 5 part do not have a definite phase relation, when observed

=ColAlko) FA(k-9)["N:N, outside the medium in the forward direction, and thus do not
1— o~ [Bmlko)+ Bu(k_9la(N,+1) interfere constructively. The single-scattering contribution to

X PR TA T P (42)  the forward scattering is also easily computed,
—e _

l1s=Col A(Ko) || A (k_g)|e~ Am(K-I2N,N,
The remaining two terms represent the ladder and cross
terms that arise from the second and the higher-order scat- 1— el Am(ko)* Bm(k—g)l(Nz+1)a
tering by occupation fluctuations. X 1— el Bm(ko) T Bm(k_Jla (45)

The proportionality ofl s to NyN,, the number of atoms
in each medium layer normal to tizeaxis, is due to the fact Formally, the multiply scattered Bragg term remains the
that each of these atoms contributes equally on average ¥yme.
scattering. The dependence of various scattered field$,on
is considerably more involved because of the decay of the
coherent fields along theaxis.

The preceding expression for the mean intensity of the We choose incidence, that is, 1° off the normal direction:
scattered light is valid, as we saw earlier, only wieis in ~ ko=Ko(sin 1°,0,cos 1°), and take, to be in thexz plane. Its
the backward direction. Far in the forward direction, all Orientation is described by an anglg relative to thez axis.
terms, except for the multiply scattered Bragg contribution,FOr the —elastic ~ scattering, we consider here
need to be recalculated. We show in Appendix D that the~ Ko(Sin650,co889. A look at Eq.(41) shows that for our

VI. ILLUSTRATIVE EXAMPLES AND DISCUSSION

new ladder and cross ternhs andC; are chosenk,, there are only two main Bragg peaks around
=179° andf;=1°. We limit 65 to the range$177°,1859
K K for the backscattering case ahde 3°,5°] for the forward
Bm(Ko) Bm(K—s)

Li=Co|A(Ko)|2|A(Kk_g)|?¢ scattering case to cover these peaks adequately.

w? Also we takew — wg=10y, where y is half the natural
1 decay rate of the isolated atom,
a
X NyN, | — f dk
§ y( a ) 0, % (K +G,)2+ B2(Ko) _ 2d%kg
LT
d(ky) 1

ikqz
et (43 We pick the ratio of\q, the incident wavelength, ta, the

lattice constant, to be 1.5, angy,=0.1. In this caseN,
and =3%-1=26. The following two identitie$16] are particu-
larly helpful to our calculations:

1-¢d(ky) & (ki +Kp)2+ B2(K_g)

2

< D 2
Cf:C0|A(k0)|2|A(kS)|zeﬁm(k1)zf§<_ _ o0 1 1
77 a =|——cotwX| —
k=1 k2—x2 X 2%’
1 da(ky)
XN Nf dk _ )
o 231 ! é (k1+GZ)2+D2 1—¢&da(ky) 1 ) 1 X4 @~ X
—+2X =1 .
(44) X TP& e Temiem
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5.0:10"° T T T T T T T 2,0x10*7 T T T T T T T
45x10*5 [ 1 1.8x10*7 | 1
4.0x10*® | 1 1.6x10*7 | 1
_ 35107 | 1 1.4x10*7 | :
5 £
B 8.0x10° | ] B 124107 F .
5] o
=
3 +5 | 4 ﬁ 7
2 2500 g 1.0x10*7 | 1
S s
>
g 2,010 | T S 8.0x10%° - 1
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-_— [=4
1.5x10%5 1 6.0x10"® |- 1
1.0x10"8 | 1 4.0x10"6 |- 1
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5.0x10" 2.0x10% | .
0.0x10"° . . - 1/\ D R : 0.0x10%° et A/\ 1 /\/f\ e
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Observation angle in degrees Observation angle in degrees

FIG. 2. Mean intensity of backwardly scattered light against the  F|G. 4. Mean intensity of forwardly scattered light against the
observation anglgs, with the contribution of the multiply scat- gpservation angles .

tered Bragg field alone shown by the dotted curve.

strictly backward direction is evident, and arises from the
cross termsC in Eq. (39). This peak is also present in the
backscattering cross section for a continuous medium of ran-

We can now numerically compute the total intenditgnd
plot it as a function of scattering direction.

One can easily identify the biggest peak on the left in Fig.dom scatterer§12].
2 as coming from Bragg scattering. It is centered fat

T oao hich th . dition i h Apart from the small peak, the effect of these multiple-
=179° at which the Bragg scattering condition is met. Theg.ayering terms is to raise the mean intensity of the Bragg

decay of the refracted wave in telirection as given by Eq. scattered light only slightly. The reason for the smallness of
(36) ensures that only a surface layer of thickness of thehese terms is that they contribute only in the second and
order of 1/ImB(ko) will contribute to any scattering. The higher orders of scattering, while the Bragg scattering terms
dotted curve represents the contribution of this surface-layegontribute coherently to all orders including the leading first-

Bragg scattering alone. order term.

The difference between the two curves in Fig. 2 repre- |n the forward direction, Bragg scattering is always
sents the contribution of multiple-scattering from the densitypresent, as seen in Fig. 4 where the total intensity of light is
fluctuations, and is plotted in Fig. 3. A small peak in theplotted. The multiply scattered Bragg terms completely
swamp the contribution of incoherent multiple-scattering
2oao®f L T~ ] arising from the density fluctuations in the forward direction.
Indeed, in Fig. 4, the multiply scattered Bragg field contri-
bution, if shown, would be impossible to discern from the
total mean intensity. This can be appreciated from the rela-
15x10% | ] tive smallness of the vertical scale in Fig. 5, where we have
plotted the contributiomg+ L s+ C¢¢ of incoherent multiple-
scattering.

In Fig. 5, we also find a peak centered &t
=ko(—sin 1°,0,cos 1°). The physical origin of this peak, un-
expected for scattering from a continuous medium, can be
traced back to multiple-scattering of radiation by a regular
lattice structure. To see this clearly, let us look, for example,

1.0x10"* | 1

Intensity of multiply scattered light

50107 - T at a third-order scattering process displayed in Fig. 6, al-
though our conclusion will be valid for any order of scatter-
ing. Suppose one scattering sequescegpresented by solid

006107 ) , , , , , , arrows, starts at atom 1 and ends at atom 3, and the scattered

1

77178 179 180 181 182 183 184 185 field is then detected far away @t Its time-reversed version

Observation angle in degrees

s’ follows the opposite sequence-2— 1. Let the incident

FIG. 3. Mean intensity of light scattered from an optical lattice 2Nd Scattered wave vectors kgandks, respectively. Then,
against the observation angle near the backward direction. The the phase accumulated for the patts
Bragg contribution is now excluded. The anglg=181° corre-
sponds to the strictly backward direction. b =Kkg-R1+ko(Ript+Ry3) + kg (r—Rj3), (46)

056615-10
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5.0x10%°

4.0x10%®

3.0x10%°

2,0x10*

Intensity of multiply scattered light

1,0x10%°

0.0x1 0+0 1 1 I
-3 -2 -1 0

1 2

Observation angle in degrees

FIG. 5. Mean intensity of light multiply scattered forward from
an optical lattice against the observation angle

while the phase accumulated for the pathis

Oy =Ko R3tKo(Rpst+ Rap) +Ks (r—Ry)

=g+ (Kot ke (Rg—Ry).

Obviously, when

k0+ kS: K,

where K is an arbitrary reciprocal lattice vector, the two
phasesb, and®, differ only by an integral multiple of .

PHYSICAL REVIEW BE57, 056615 (2003

the medium. It is therefore necessary to consider only the
transverse projection of E@48) on to that surface,

ki +kg =K, (49

to determine the various directions of the multiple-scattering
enhancement peaks. This result is analogous to the Bragg
scattering condition but has a purely multiple-scattering ori-
gin. For the special case, we are considering here, there are
only two enhanced directionss=(—sin 1°,0,-cos 1°) and
ks=(—sin 1°,0,cos 1°) corresponding to the peaks in Figs. 3
and 5, respectively.

In a continuous medium, since all nontrivial valueskof
may be regarded as being infinitely large, there is only one
enhanced direction, corresponding to the trivial valu&of
namely, 0. This represents the familiar backscattering en-
hancement peak &= —Kj.

VII. CONCLUSION

In this paper, we have discussed the multiple-scattering of
light from a randomly occupied optical lattice, and showed
that the discreteness and regularity of the lattice modify in
rather subtle ways both the decay constant of the refracted
light and the intensity of the scattered light, when the inci-
dent light has a wavelength that is comparable or smaller
than the lattice constant. Unlike a continuous medium, where
the contribution from a uniform background is most appre-
ciable only in the forward direction, coherent Bragg scatter-

These contributions to the scattered field therefore interferghg tends to dominate in the scattered light in an optical
constructively, leading to an enhancement of the cross segattice along the whole collection of Bragg directions. We

tion.

also showed that due to the discrete but regular structure of

Since the coherent refracted wave undergoes a rapid logg optical lattice, the nature of multiple-scattering is quite
of amplitude in thez direction, the enhancement from the different. In particular, the multiple-scattering peaks occur
constructive interference of direct and reversed paths comesot just in the backward direction but in all directions that
mainly from lattice sites that are close to the entrance face dfiiffer from it by a reciprocal lattice vector. In a continuous

medium, by contrast, the constructive interference of direct
and time-reversed paths that is responsible for enhancement
of the scattered light produces a peak only in the strictly
backward direction.

APPENDIX A: CALCULATIONS OF 14(R;,R))
AND 14(R; ko)

By using the Fourier transform relation

——dk, (A1)

eikor 1 J~ eik-r
2

4wr:@

in which kg is understood to possess a vanishingly small

FIG. 6. The third-order scattering and its time-reversed versiorpositive imaginary part, we can rewrite the second term in

represented by the solid and dashed arrows, respectively.

the serieg33) as
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12(R R)_(Wlas)z elkolRi—Ril  gikolR¢—R|
LA By kAR 4mIR— Ry 47| R — Ry
3)2 iky-(Ri—R)
Wia e "1\t
s S [
,80(87T) I #i kl_ko
gik2 (Rm=Ry)
X2, | dke—m—— . (A2)
m#j k2_k0

Use of the identity, 5= (a%8"°) o dke'“ (Ri7Rm in
which the integration volume is the fundamental Brillouin
zone ()3, followed by a change of the order of integration

PHYSICAL REVIEW E57, 056615 (2003

over § functions. By evaluating these integrals, we may de-
rive the following expression for{?):

2.3
wia

dk,e'k1Rij

Ig.Z)(RI 1R]):
Q3

B08’773

P>

K

1
(kg +K)2—k§

whereR;; =R;—R; andA = (a%87°) [ dk,1/(k3— k).

In the integrand of Eq(A4), the vectors; + K represent,
for differentK, all possible wave vectors that can result from
the scattering of radiation with wave vectoy incident on a

2
Al . (Ad)

and summation and repeated use of the Poisson summatioegular lattice of atoms. But not &l contribute equally. The

formula

_ 2m\®
Eeu(kakm-m:(_w > 8(k,—kg—=K), (A3)
T a K

where K’s are the reciprocal lattice vectors, simplify the
right-hand side of Eq(A2) into a form involving integrals

resonant nature of the propagatdr(kj + K)?— kﬁ] tends to
favor those wave vectois, + K that have magnitudes close
to ky. Wave vectors that meet the above two conditions rep-
resent Bragg scatterifd 7], which is therefore the dominant
scattering channel for a lattice based medium.

Every higher-order term in the serié33) may be simi-
larly simplified, thenth-order term taking the form

(W1a3)” e'koRil, glkoRi,, elkoRi i,y elkoRi, i
Bo 15, 1,5, 4wRy 4nR 4R 4wR
3 1 n
=w! f dk, e’k Rij — A, (A5)
1,308773 Q3 ' ; (k1+K)2_k3

for n=2. By adopting a somewhat different strategy, the first

term in expressioli33) can also be transformed into a simi-
lar form. If in Eq. (A1) a decomposition of the entire recip-

There is a common expression in the denominator and
numerator in the integrand of expressigA7), namely,
S« (k;+K)2—k3]—A. For every pointk, in the funda-

rocal space into the first Brillouin zone and copies thereof isnental Brillouin zone, eack when added to it moves it into

made, we may write
W1a3 eikolRi— Ryl W133

180 477-|F2I_Rj| _ﬁ08773 Q3

x| >

K

dk, el Ri

1
(ki +K)2—k§

J
(A6)

Use of Egs(A5) and(A6) then turns the multiple-scattering
series(33) into an integral with a geometric-series integrand
that can be summed exactly, with the result

d?f\27 )
11(Ry,R)) = dk, ek Rij
8 Q3
! A
K (ki+K)?>—k3
X . (A7)
1 > ! A
_W —_—
R (k+K)2—K2

another zone. The terms for whidk;+K| happens to be
close tok, tend to dominate, as we noted earlier. We there-
fore group the complete s€K} of reciprocal lattice vectors
into two families:{K} consisting of those vectors for which
|k, + K|~k for all k; e Q3 and the res{K}. By defining

1

= ———— A, (A8)
K&k (ky+K)2—k
we may write
d?f\2a .
Il(Rl7Rj): 3 dklelkl.Rij
87T 93
1
—+S’
bi (kg +Kp)2—k§
X
1 > ! +s'
-w —————+s
1% (ki+Kp)2— K3

(A9)
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d*\2xm

47%(1-w;s')iR;;

’
’
ra
A7
.
’
z
.
¢
3
’
[y
.
7
s
a2
I4 ’
e
4.7,
na
v ;0
s
.

I1(Ri,Ry) =

1
1+s'(|<§—|<§)N—b

kot mla .
X f kqdk,ek1Rij

ko—la 5 o WiNp
. ki—k§i————
N 1~ Ko ;
N 1-w;s
AN 1
N NN A 2 L2
RN 0 ~ (ko= /a) " 1s(ke kO)Nb
. \\‘\ A + k,dk,€' 1Rij ,
AN VA ~ -_— +
TN NN (ot e 22— _VaNo
AR RN NN NN 1Ko ;
SENARN VAN 1-w;s

N A
R N

AR N RN [N N NN N
RN, SR N RN T N KN N
NARRN NIRRT A NS PR
AR AT M T M N
RS NS ~ N ~ N

. N N
TR TN B e s At SR TN B TN

(A11)

where the second integral results from a transformation of
FIG. 7. Classification of the set of resonant reciprocal latticethe integration variablek,— —k;. The preceding two inte-
vectors{Kp} shown for simplicity in two dimensions. The shaded grals can be extended over the whole space by multiplying
squares mark the displaced copies of the fundamental Brillouirthe integrand by a functiogi(k;) which is essentially equal
zone that contribute most significantly to the integaf). to 1 whenky,— m/a<k,;<ko+ m/a and — (ko+ m/a) <k, <
—(ko— m/a), and goes to 0 smoothly at the boundaries. We
In this form, we explicity keep only those multiple- thus have
scattering channels represented by the farfily} that sat-
isfy the Bragg scattering conditions—and therefore conserve
energy—and treat the rest of the channels, represented by the
family {K¢} which do not conserve energy, as providing a
modified background contributios’ that can be approxi-

d2f\2x7

1.(Ri R;)=
f(RRy) 4m(1-w,s)iR;;

J' dk,k,e'kRij

mately regarded as a constant:

1

S/ = —A
K%S} K2—k3

Suppose there ald, members in{K,}. Then, the sum
over{Ky} in the numerator ifA9) will shift the fundamen-

1
1+s'(k§—k§)N—
b

X P(kq).

(A12)

The preceding integral may be evaluated by means of the
residue theorem. The main contributions to the integral come

— 2 '
tal Brillouin zone toN,, new positions that form a connected from the poles atk, = Vkg+wiNy/(1—-w;s’), and rela-
volume which, for largek,, ko>27/a, can be regarded ap- tively little from the singularities of/(k;), as we show in
proximately as a spherical shell structure with width of theAPPendix B. We arrive in this way at the expression

order of 2r/a and radiuk,. This is shown in Fig. 7. As for

the same sum ovdK,} in the denominator, which is from
the multiple-scattering process, we will treat it in a sort of
mean-field approximation, i.e., we will assume that the con-
tribution to it from each of theN, new zones is the same.

Therefore, we can approximate the integés®) as a volume
integral over a spherical shell of radikg and thickness

2la, so that
1 Lo
—_— S_
d?f 2 . k?—k2  Np
(R, R)= ————|  dkqelkaRij— 2
8w Jshell Ny,
1-wy| ———+¢
kl_ko
(A10)

By noting that the angular averaging ef<c'Rii over the
directons  of k; vyields  (sinkR;/KkR;)=(e""i
—kRi)/2ik,R;;, we may express EqAL0) as

d2f\2m

(R ,R)= e'*®oRijy(a(k
1( i J) 47T(1—W1$')2Rij l//( ( 0))
ES(kO)Riei[Rea(kO)Hlm a(ko)]Rij' (A13)
i
where  a(ky)=Vkg+w;Ny/(1—w;s’)  and  s(ko)

=(d?fV2m)/[4m(1—w;8") 2] a(ke)).
We can resunhy(R; ,kq) too by a similar method. We first
decompose,, the incident wave vector, into its horizontal

components in they plane and component in tzedirection
by writing ko= (k, ,k,z). Then, we have

eikoRi= gk -Ri+ikzz;
Noting thatz;, thez coordinate of a point inside the medium

relative to the entrance face, is always positive, we may ex-
presse’kz as
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eikzzi:foo dkt 5 Zeiktzi.k—zl (A14) EWI - S/’Wle
% ks—k |77 H _ ’
t Kz i 2(1—w;s")
lo(Ri ko) = ;
where a vanishingly small positive imaginary partkpis 1-w;s 5 Wi Np
understood. Witre'*z% in such an integral form, the second ky+ 7
term in the series expression 6f(R;,R;), Eqg. (32), be- 1-w;s
comes x e'ki Righkolziy (B(Kq))
. . = A (kg) ek RigilRe Blko) +ilm ako)lz;
iko-R;
wya ,;, 9(R; R0 (AL8)
w,ad k, elk1-(Ri~R)) wheres”=3 5 ,1/G3~k, A denotes the coefficient in front
= 873 G;, Jdklw of the gxponential functions, I?ﬁ(ko) -and ImB(ky) are,
respectively, the real and the imaginary parts £fkg)
_ eikiz; =kZ+w;N,/(1—w;s’) and ¢, analogous toy in Eq.
Xe'ki'RiJ dki——. (A15)  (A12), is defined to extend the fundamental Brillouin zone
ki —kz Q, in Eq. (A17) to the range {«©,») so that the residue
theorem can be used to compute the resulting integral.
Decomposing the vectdd in its (x,y) andz components, A continuous medium can be thought of as the limiting
kr=(k, .kti), and using the same technique as that used fogase of a discrete medium in which the average separation
arriving at Eqg.(A4), we obtain between two nearest constituents is so small relative to the
wavelength of the incident light that the discrete structure of
K ek the medium is essentially invisible. In this lima<<\y, Ny
wiaY, g(R; ,Rj)eikO'Rj:Wl_—zeikL'RiJ dky—>—— will be 1, sincekg is already in the fundamental Brillouin
i#] I ki —k; zone, ands’ of Eq. (A8) will be zero. On the other hand,
whena is comparable to or larger thax,, N, can be very
1 different from 1 ands’ will not vanish. The discreteness of

X ——— A
; (kt+K)%2—k3

the lattice is surely important in this case.

(A16) APPENDIX B: JUSTIFICATION OF (k)
AND g+ (k,) IN APPENDIX A
By noting that each higher-order term in expresdi®® has
an identical structure as E@A16), except for a different There are many ways to choose the functigfik,) intro-
power of the term inside the square brackets, we can turn E§luced in Eq(A12). It can, for example, be mimicked by the
(32) into an integral with a geometrical series in its inte- following composite Fermi function:

grand, which can be easily summed leading to the expression L L
K: v R " w(kl):|:e(k1k0+w/a)/ko+ 1 +e(k17k07ﬂ-/a)/k0+ 1 1
IO(Ri ,ko): —e' R dktel ti
| 0, 1 1
2 1 + e~ (ki+kotmla)ko 4 q +e(k1+k0—w/a)/koJr 1 BN
y G (ki Kp)?— kg (B1)
1—wy| >, 1 _ where the functions in the first square bracket produce ap-

1% (kr+K)?—k3 proximately a flat platform of height 1 in the rang&q(

—la,kg+ m/a), and the functions in the second bracket do
the same over the range-ky,— 7/a, — ko+ 7/a). With such

] ) a choice ofy(k,), it is therefore valid to approximate the
In Eq. (A17), we have transformed the integration of sym of integrals in Eq(A11) by the integral in Eq(A12).
lo(Ri ko) over (—=,%) to integrals over successive one- However, as we extend the integral over from the one-
dimensional Brillouin zones and then reduced those integralgimensjonal real line to a two-dimensional complex plane,

to a single integral over the fundamental zdile, —7/a  this composite Fermi function will have four series of poles,
<k{</a, by introducing one-dimensional reciprocal lattice gt

(A17)

vectorsK, .

By following a procedure entirely analogous to that used ko— mla—ko(2n+ 1) i,
earlier to calculate;(R;,R;), we arrive at the following
approximate expression fop: ko+ mla+tko(2n+1) i,
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—ko—mla—ko(2n+1) i, 27\ 3 1
-2y
—ko+ mla+ky(2n+1) i, Ko VKT + (ki +Ky)

VK2 + (K +K,)?

wheren’s are all integers. Since ie™*1%i, R;; is always s arctar

positive, the integration contour can be closed at infinity in am(ko)

the upper half plane without changing the value of the inte-

gral. Thus, only poles in the upper half plane will contribute 1 Kg

to the integral. Their contributions will, however, be of the B dkgk—garctal lam(ko : (C4

o2 ) :
order ofe~27127+1IRij o which are very small even when

Rjj is of the order ofko. Therefore in using the residue |, gq (c4) {K} is the set of the three-dimensional reciprocal
theorem, we do not need to include the contributions fromstice vectorsK, andK, andK, their projections in thecy
any of the poles ofi(k,). A similar discussion applies ¥t plane and along theaxis, respectively. For terms with large
in Eq. (A18) as well. K, |K|—o, the sum in Eq(C4) may be approximated by an
integral that has the same divergent character as the integral
APPENDIX C: CALCULATION OF L in that equation, and the difference between the two is

bounded rendering(k,) finite.

By substituting expressiofC3) for L, into Eq.(C1), we
obtain

By setting Co=Bo(1—B,) and using the expressions
(A13) and(A18), we can putL into the form

L= |A(k0)|2|A(kfs)|2CoE efﬁm(k—s)zi
I

(ko) k)
L= IA G PlAK_gf2coe 0o

1
X C0|S(k0)|22 e*am(ko)Rij_ze*ﬁm(ko)Zj o0 1
iij le XNxNy - J klE 2 2
1 G (K1t Gy Bi(ko)
1
+C2Is(ko)[*Y, D, e amkoRij — 1 d(k
O| 0 | e Rﬁ XE - ( 1) , (C5)
K, (ki+ K2+ B2 (k_g) 1—&d(ky)
1
—am(ko)Rjkg=Bm(Ko)zk —_ 4 . ..
xe e o j2k * ' (€D whereN, ,N,, andN, are the numbers of lattice sites along
X, y andz, K, and G, represent the components of the
Notice that one-dimensional reciprocal lattice vectors, &ngdis the fun-
damental Brillouin zone, { w/a,w/a), along thez axis.
By defining
1 1 1 k .
— e *m(ko)Rij = —f —arctar{—g e'*o Riidk, .
R’ 272) kg am(Ko) Ak=k, —k
1L —Ssl s
(C2
W : _ _ Ak,=k,—k_q,,
e define Bn(ko)=21ImpB(Kg), am(ke)=2Ima(ky), & z "z sz
= Cols(ko)|?(1/27%), andL,,, the series in the square brack-
ets in Eq.(C1). We also note that ARe=RepB(ky)—ReB(k_g),

ikz, Alm=Im B(kg)+Im B(k_y),

o Bulkgz— Pmlko) (=@ dk
™ e ket Bhko)
using Egs(A13) and (A18), and following the same proce-
By using the one-dimensional version of the Poisson sumdure as that used in derivirlg we find
mation formula(A3), we may replace the sum over exponen-

tial functions by a sum oves functions, which can be easily 5 , [AIm 2 2
integrated to yield C=Col Ako)*|A(k-g)[*€| ——| NxNy| —= fg dky
1
. 2
(ko) (= gk d(kq) 1 dy(ky)
Lp:é:Bm 0 f dkl ] : 1 , (C3) X E > 5 1_ ld 1k ’ (CG)

T ) K3+ B2(Kko) 17 &d(ky) G, (k;+G,)2+AIm &di(kq)

where we have used the notation where
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)3 1
a 2 ) 2
a/ ® J(Ak+K,)?+(k;—ARe+K,)
VAK+K )%+ (k;—ARetK,)?

Xarctan
am(Ko)
arCtan—

f d"gk (ko)

Note thatd,(k,) is different fromd(k;).

di(ky)=

(€7

APPENDIX D: CALCULATION OF L AND Cs

The difference betweeh; andL, and betweeiC; andC,
is thatL; and C; describe the forward scattering of light,

while L and C represent the backward scattering of light.

Therefore, 1o(R;,k_s) given by Eg. (37), rather than
lo(Ri ko) given by Eq.(36), is the propagator that appears
in L; andC;. They are expressed as the series

Lf=c§; 15 (Ri k_9)lo(Ri k-1 (Ri,R))
X13(Ri RIS (R} ko) o(R; ko)
+C3.§, JE 15 (Ri k-9l o(Ri k-l F (R ,R))
X15(Ri,R)IZ (R, RI1(R; , RIS (R, ko) o( Ry Ko)

+o, (D]_)

cf=CS§j 15 (R k-9l o(Ri ko)l % (R ,R)IL(R,R))

XI5 (Rjko)lo(Rj k-9 +CF 2 15 (R ko)
#T1#1

X1o(Ri ko)1 (Ri,R)I1(Ri ,RNIT (R ,R)I1 (R} ,Ry)

X15 (R ko) lo(Ry K—g) + (D2)

The seried_  may be expressed in terms of the quantity,
we have defined and calculated in Appendix C,

Lf=co|A<ko>|2|A<kfs>|22 e Anlk-9z-z)

(Ko) Bun(K 2
~ ColA (ko) 2 A (k_g 2 EnKnlCd -
ar
J dk, S 1 d(kq)
0, lez (K2+G,)2+ B2 (ko) 1~ €d(ky)

1
(ki +K,)2+ B2 (k_s)

eiklzf

, (D3)

medium, andG, and K, denote, as before,
dimensional reciprocal lattice vectors. On the other h&hd,
can be expressed as

PHYSICAL REVIEW E57, 056615 (2003

the one-

1
cf=co|A<ko>|2|A<k_s>|2e‘ﬁm‘kfs”f2—772

i #]

fdkk

4 C§|s(k0)|4' izil el AK-Rig(iS-D)zg—iAk-R
i#],]

fdk

X elks (Rj=R)g=(iS+D)z 1 .

—arctan k e|k -(Rj— R)e (|S+D)z
am(Ko)

1
ks

e~ am(ko)Rjj

ks
—arctan——

X em(Ko)

2

1
Eco|A<ko>|2|A<kfs)|2e‘ﬁm‘kf8>2fﬁcfs, (D4)

whereC; denotes all terms within the square brackets in the
line just preceding it and
Rep(ko) +RepB(k_5) =S,
—Im B(ky)+Im B(k_g)=—D.

Using the technique we adopted in Appendix A, we can de-
rive a geometric-series expression for the integran@ Qf

|kzI

23 e Dzlfdk (k)
D elkz,
e 2e Dufdkk =2 d5(k)+ -
(D5)
where
)3 1
d(k={ 7 ; J(Ak+K )%+ (k—S+K,)2

X arctan/(Ak+K )%+ (k—S+K,)?an (ko)

1 ks
— f dkg Sk Zarctan——.

(ko) (b6

wherez; is thez coordinate of the final layer of the atoms as The geometric series is easily summed, and the following
seen by the incident light relative to the entrance face of thelosed-form expression established @y,
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d,(k) 1
fgldkl—§dz(k) ; (k+K,)2+D?

2
; (D7)

< D\? 2
Cf:C0|A(ko)|2|A(ks)|zeﬁm(k‘5)zf§(;) Nx'“y(?

where 8, = smaller of ImB(ko) and ImB(k_y).
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